
MongoDB Jetpack

1MongoDB Jetpack

What’s Inside

Introduction 2

What is MongoDB? 3

Top 4 Use Cases for MongoDB 5

When to Scale MongoDB Instances 8

How to Properly Scale and Maintain MongoDB 11

Intro to Massive Scaling with MongoDB 18

Upgrading MongoDB Instances 20

Why Choose ObjectRocket? 24

About ObjectRocket 25

2MongoDB Jetpack

Intro

It’s no secret that NoSQL databases have gained tremendous
ground over relational databases in the last decade. A primary driver
for this is the huge amount of data generated today from sources
we never would have dreamed of two decades ago. Cell phones,
mobile applications, and social media alone created the need to
handle massive amounts of data from many different sources and
with varying structures. This data works best with “schemaless”
databases, like MongoDB.

2MongoDB Jetpack

Read on to learn more about what MongoDB is and how businesses
are using DBaaS for MongoDB to get ahead of the competition.

3MongoDB Jetpack

What is MongoDB?

Introduced in 2009, MongoDB is the top NoSQL document database. A document
store database is a database that stores data as documents. It is used for various
workloads by a wide range of companies including Google, Facebook, TheChive,
UPS, Braze, Cisco, Electronic Arts, and many more.

According to DB-Engines ranking, there are now 45 document datastores
out there.

MongoDB has been leading that pack of NoSQL document store databases for
most of the last 4 years.

Read on to learn about why you

should use MongoDB #1 MOST WANTED
DATABASE

according to a recent
Stack Overflow survey. 1

It’s currently the

https://www.objectrocket.com/chive-case-study/
https://www.objectrocket.com/braze-case-study/
https://insights.stackoverflow.com/survey/2018/

4MongoDB Jetpack

Why Use MongoDB?

MongoDB and similar NoSQL databases allow for faster, more flexible
development cycles that help lower software and deployment costs. Additionally,
developers love the schemaless aspect where they are not forced into more rigid
structures like they are with relational databases. MongoDB meets the need for
flexible data models that serve unstructured, semi-structured, and structured
data types.

There are several additional reasons to use MongoDB instead of other document
store DBs:

• MongoDB meets the need for flexible and scalable architectures that are built
from the ground up as fault tolerant clusters with redundancy. It provides this
high availability via multi-member replica sets that use a PRIMARY/SECONDARY
relationship where writes and reads go to the PRIMARY by default.

• MongoDB with its native BSON format and JSON extensions supports many
more programming languages (27) versus some of its competitors like
Cassandra (13) and Couchbase (14).

• MongoDB provides robust indexing capabilities including secondary indexes
and index intersection to cover a wide variety of queries.

• MongoDB includes a powerful Aggregation Pipeline that allows for data
transformations along the way.

• MongoDB has implemented retryable writes and change streams to be ACID
compliant for Multi-Dcoument Transactions.

1Stack Overflow Developer Survey Results 2018. Accessed 8/4/18.

https://insights.stackoverflow.com/survey/2018/

5MongoDB Jetpack

Top 4 Use Cases for MongoDB

Let’s review some of the use cases our clients face, and we’ll explore how MongoDB
addresses each one.

6MongoDB Jetpack

1 Customer Analytics

Data aggregation is one of the keys to creating amazing customer experiences.
Companies are collecting massive amounts of data about their existing and
potential customers and aggregating it with publicly available data. From all of this
disparate data, companies can build customer profiles and nurture paths with the
goal of getting the customer to buy more products.

With all of this data coming from different sources with different schemas, tying
it all together at such a massive scale is a huge challenge. The flexibility and
scalability of MongoDB provides a solution. MongoDB allows for the aggregation
of this data and building analytical tools in order to create amazing customer
experiences. MongoDB’s speed allows for dynamic experiences that can evolve
based upon the customer behavior in real time.

2 Product Catalog

Product catalogs are not new to the evolving digital experience. What is new is the
volume and richness of the data that feeds the interactions in product catalogs
that we use today. MongoDB provides a great tool to store many different types
of objects with different sets of attributes. MongoDB’s dynamic schema capability
allows for product documents to only contain attributes that are relevant to that
product. Gone are the days of needing every product record to contain every
possible attribute. MongoDB users can very quickly and easily make changes to
their catalogs, providing a better experience for developers and customers.

3 Real Time Data Integration

Companies have vast amounts of data spread across their organization. Data
provides value if it’s aggregated in one “single view”. Previously, energy and
resources were spent on data ingestion, transformation, and schema changes
in order to obtain a single source of data. MongoDB’s flexibility and query
capabilities make it easy to aggregate this data and create the tools that make
organizations more efficient. This aggregation can be achieved to provide a “single
view” of their data in real time. With the addition of change streams in MongoDB
3.6, developers can now monitor and take action on specific events quickly.

4 Mobility and Scaling

With most mobile application development, companies are dealing with varying
data structures coming from multiple sources and potentially highly dynamic
growth. The flexibility and scalability of MongoDB provides a great database
solution for dealing with this type of environment. With schemas that can evolve
over time, mobile application developers don’t have to spend time adjusting the
database. Instead, developers can focus on developing the customer experience.

Today, modern businesses are thinking about better ways to store and manage
their data, gain better customer insights, adapt to changing user expectations,
and beat competitors to market with new applications.

https://www.objectrocket.com/blog/mongodb/intro-to-massive-scaling-with-mongodb/

7MongoDB Jetpack

Good General Uses for MongoDB

• Highly unstructured data (no
need for a rigid, defined schema)

• Lots of data

• High write activity

• Balancing writes and reads/
queries

• Desire for duplicate or
denormalization

Specific Use Cases for MongoDB

• Mobile and mobile analytics

• Catalog data and inventory

• Content management

• Social media user data

• Game user data

• Internet of Things (IoT)

• Augmented reality (AR), Virtual
reality (VR), and MR related
applications

• Core and off-chain datastores
that support blockchain initiatives

MongoDB is a great tool that many companies find useful, but managing MongoDB doesn’t fit

into everyone’s business model. It’s hard to find the right expertise and many companies can’t

afford to hire the headcount.

ObjectRocket for MongoDB can help.

No matter where your app is hosted, we can help you get the most from your data.

Other Use Cases

https://www.objectrocket.com/managed-mongodb/

8MongoDB Jetpack

When to Scale MongoDB Instances

Scaling tends to be reactive in nature leading to issues such as degraded application
performance or, even worse, total application downtime. These issues ultimately lead to a
negative customer experiences that impact your business. So how do you know when it’s
the right time to scale your Mongo database so you don’t impact your bottom line?

9MongoDB Jetpack

Find the right threshold for your app

To ensure your application weathers the storm of growth in application usage and
surges in traffic, it is imperative to load test a system to determine the threshold
that your application can handle before you apply changes like scaling to your
production system. More often than not, this process is overlooked and results in
fire drills when you encounter issues with an increase in traffic.

• The road to a successful MongoDB load test should include the following
considerations:

• Which metrics need to be monitored so you can find bottlenecks?

• What threshold should be used in terms of when to scale?

• Which tools should be used to analyze the metrics?

• Where should you run the load test?

Which metrics should I monitor to find
bottlenecks?

First, you’ll need to determine which criteria to use to find the limiting factors
to your particular application. Every application is different. Knowing these
requirements will allow you to determine the appropriate metrics to monitor from
the database side.

Here are some examples:

• Your application requires X number of inserts per second when there is an
increase in traffic.

• Data needs to return to the user in less than 100 milliseconds.

• There is a limit in the number of concurrent connections.

• There is a limit in server resources, such as high CPU or load average.

Once you are able to determine the application-side metrics, you can decide what
to monitor on the database side.

For example, if your requirements are to have a certain number of insert
requests, focus on write metrics such as:

• Server I/O

• Database locking

• opcounters, in terms of active writes

• Available write tickets, if you
are running WiredTiger as your
storage engine

10MongoDB Jetpack

Tools used to analyze the metrics

Once you determine which metrics to monitor, you need to gather the data from
the database side. Here are some utilities utilizing you can use to analyze the load
factor:

• mongostat utility shows real-time database metrics on locking, read, and
write queues.

• db.currentOp() utility determines the current active operations.

• mongotop allows you to view the top active collections.

• Server utilities such as top, sar, iostat show metrics such as CPU utilization or
disk throughput.

In addition to real time analysis, you can also mine the MongoDB logs for
additional details about database activity as well as any error conditions. By
default, MongoDB logs queries that take longer than 100ms to execute so it is a
good tool to identify poor performing queries.

Determine where to run the load test

Once you determine what you will use to gather the data, you are ready to load
test. Common sense dictates that you should never load test in a production
environment. Sometimes this becomes a show stopper because it can be difficult
to spin up an environment fast enough. If you are not already on the ObjectRocket
platform, you can spin up a MongoDB test cluster very quickly.

Need some help?
Knowing when to scale your MongoDB environment
can get complicated. ObjectRocket customers enjoy
the best scaling and sharding support hands-down.

Contact us today to get started.

https://app.objectrocket.com/sign_up
https://www.objectrocket.com/contact/

11MongoDB Jetpack

How to Properly Scale and
Maintain MongoDB

The ease of installing and running MongoDB can lead to neglect of basic database
management. Then one day you’re getting frantic calls from a client or coworker
about an application that’s crashed. Your current MongoDB setup couldn’t handle
the increased usage and simply gave up.

Not accounting for growth and increased data needs is a failure of scaling. Here
are some things you can do to make sure your MongoDB setup can handle your
workload at any point.

12MongoDB Jetpack

Apply good
DevOps practices

The convenience of MongoDB doesn’t free you
from the responsibility of applying a good DevOps
strategy. Your database still needs a sound schema,
careful monitoring of data loads, a good indexing
strategy, and enough hardware resources to support
large data clusters. Poor design or implementation
of any of these factors can lead to failure.

Large enterprises looking for a more feature-filled
version of MongoDB should know that ObjectRocket
offers a Percona solution to support enterprise-level
capabilities like enhanced security and added agility
for tracking and managing your database.

Keep an eye on everything

Are you prepared for any usage ramp-up for
applications your MongoDB instances support? You’ll
suddenly find yourself at the end of your capacity if
you’re not keeping track of the way your clusters are
handling different workload levels.

Keep an eye out for replication lag in particular. Your
MongoDB needs to handle system capacity at times
when your oplog window is at its shortest. Too much
lag could cause data to be overwritten and not be
recoverable, or cause problems with syncing up your
old and new data.

If you don’t have the time or resources to keep a
close eye on your MongoDB instances, a fully hosted
and managed MongoDB service may be a great fit
for you.

Leave the internals alone

There should be no reason for you to go in and
tamper with your internal databases or the system
collections. You should be restricting yourself
to using shell helpers and administrative commands
for any needed performance operations.

Any issues with functionality are most likely tied to
problems with design, installation, or maintenance.
The path forward should NOT be trying to force the
core structures to do what you want.

https://www.mongodb.com/blog/post/replica-set-health-is-more-than-just-replication
https://www.objectrocket.com/managed-mongodb/
https://www.objectrocket.com/managed-mongodb/

13MongoDB Jetpack

ObjectRocket can help you set up a
new MongoDB instance or help you
configure your current one for the
support your applications need.

Have a security strategy

Attacks in recent years on MongoDB instances makes it doubly important that
your database have some type of security protocols in place. This means doing
more than running processes on different ports. MongoDB provides you with
five different ways to secure your database. Failing to do so leaves you vulnerable
to a ransomware attack that cripples your processes.

Call in an outside company experienced with establishing security parameters
within MongoDB if you’re unfamiliar with how to properly set them up. They can
walk you through how each of the different security areas works and help you find
the right configurations. Contact ObjectRocket to talk about MongoDB security.

Scale wisely

Work with your MongoDB management company to define which scaling strategy
is right for your workload. There are a couple of different methods for scaling
MongoDB that we’ll cover in-depth in the next chapter.

https://www.csoonline.com/article/3162711/security/mongodb-ransom-attacks-continue-to-plague-administrators.html
https://www.objectrocket.com/contact/

14MongoDB Jetpack

Intro to Massive Scaling with MongoDB

With databases, scaling refers to having the ability to expand to meet
additional needs around storage/disk, RAM/memory, CPUs/compute
cycles, networking, or other resources.

15MongoDB Jetpack

Scaling proactively
When you proactively plan to scale, there are at least two general patterns:

• You know that you have a big marketing push coming up where you think that
you will be adding a significant number of customers and/or amount of data.

• Your application or business tend to be cyclical in nature (e.g., Christmas buying,
New Years’ resolutions, etc.) where there will be a lot of activity or events that
you will want to capture and keep a high volume of data.

Scaling reactively
Are you seeing small warning signs? When you start hitting bottlenecks and you
expect to continue growth, you already need to be thinking about scaling.

Trouble signs to watch for include things like...

• increased query times for end users

• increased login times

• requests and servers freezing up

• the dreaded “database slow” cries
from developers

• slower server response times

• increased load on hosts

• out-of-memory errors

• unintended elections

• errors in the logs

When you start seeing these signs, it’s time to start scaling so you can keep up
with demand and make sure you aren’t losing customers.

Two Approaches to Scaling

16MongoDB Jetpack

Scaling vertically
This is the proverbial Big Iron method: One big machine with lots of resources
(CPU cores, higher CPU speeds, lots of RAM, storage).

The main benefits of vertical scaling include reduced architectural complexity and
fewer hosts to maintain. This is helpful if you don’t have anyone that can handle
the maintenance for you.

Today, there are many ways to scale up vertically. There are better options for
commodity hardware, cheaper disks and storage, better storage options, cheaper
memory, better software, and networking so you can more gracefully handle
failovers and interruptions.

Scaling up works well for many applications and needs. For those we would
recommend the Replica Sets discussed below. One thing to keep in mind with
using larger replica sets is that there can sometimes be hidden costs to scaling
vertically. If your environment continues to grow rapidly, you may have to
constantly be moving to larger and larger machines or have additional resources
added to your hosts until you reach a point where that is no longer an option.
You should also consider that upgrade cycles are less efficient on a single larger
host versus a horizontally scaled environment. With continued growth, you would
have to decide whether to continue to scale up or if you feel that you may benefit
from scaling horizontally.

There are two ways to scale:
Up (vertically) or out (horizontally).

17MongoDB Jetpack

Scaling horizontally
Sharding is horizontal scaling. Sharding stores data across multiple nodes,
distributing the load and the processes across the hosts. Replication is handled
via Master-Slave with the ability to add additional nodes as needed.

The ‘chunks’ of data are distributed by the Balancer across the disks on the nodes.

This increases read and write capacity by distributing read and write operations
across a group of machines, instead of hammering one machine with writes or
with reads. Luckily, there have been great improvements in balancer function over
the last few releases.

Scaling horizontally takes advantage of MongoDB’s built in sharding ability and
also benefits from the ability to use cheaper commodity hardware.

When you scale horizontally, you add additional resources with physical or
virtual hosts.

• Physical – lots of lower cost commodity hardware

• Virtual – add additional CPU cores or nodes via VMs or cloud

• Networking – add load balancers, additional mongoS processes, etc.

• Utilizing improved load balancing technologies (hardware and software) to
shuttle traffic to where it needs to go via load balancers, etc.

CONFIG 1

Client Drivers

CONFIG 3

CONFIG 2

CONFIG SERVERS
(METADATA)

Replica Set 3.2 MongoDB Tier Replica Sets

SHARD 1 SHARD 2 SHARD 3

MongoS Tier (ROUTER)

MongoS MongoS MongoS MongoS

Primary

Secondary

Secondary

Primary

Secondary

Secondary

Primary

Secondary

Secondary

18MongoDB Jetpack

What is a replica set?

A replica set in MongoDB is a group of processes that maintain the same data
set. Replica sets provide redundancy and high availability, and are the basis for all
production deployments.

The secondaries replicate the primary’s oplog and apply the operations to their
data sets.

PRIMARY

SECONDARY SECONDARY

19MongoDB Jetpack

Replica sets or shards?

The trade-off you make in sharding comes with some increased overall
complexity. But sharding also provides the benefit of simplifying maintenance by
allowing for rolling upgrades and the ability to perform certain operations such as
index builds in parallel at the same time across your shard/nodes.

Here are some comparisons between using larger replica sets vs. sharded clusters:

Replica Set Sharding

Simple Expertise needed

Lots of Reads across a wide data
set (Don’t want to scatter gathers)

Lots of Writes/Updates (Want to go
directly to exact shards for results)

Lots of data, lower activity rates Lots of data, lots of activity

Need more “normal” resources –
ex. just disks

Need more of all resources – Disks,
RAM, CPU, write scopes

WHY MANAGED MONGODB FROM OBJECTROCKET?

The ObjectRocket Difference,
in a word, expertise.

Jon Hyman
CTO and Cofounder, Braze

Read This Case Study

ObjectRocket has done so many things over the
yearsto help us scale from an environment that was
only around 10 instances and about 150 shards to
where we are today.

“

LEARN MORE

19MongoDB Jetpack

1 We have been managing MongoDB from the get-go.

2 We support larger replica sets and sharded clusters.

3 Get the best proactive hands-on support, hands-down.

 The right response 24 7 365

https://www.objectrocket.com/braze-case-study/
http://www.objectrocket.com

20MongoDB Jetpack

Upgrading MongoDB
Instances

Upgrading from an older version of MongoDB can be painful. We get it. Your app is
working, you don’t have the time or resources to upgrade (even though you know
you need to). It stays at the bottom of your backlog because new features and
enhancement to your application are always more critical to the business. You keep
putting it off, knowing that you are getting farther and farther behind.

We talk to many IT and DevOps leaders that find themselves in this situation. They
use MongoDB 2.4 or 2.6 and they’ve fallen really far behind. And they feel stuck. Read on to learn about

the path forward.

21MongoDB Jetpack

Reap the benefits of upgraded MongoDB instances

Each release brings new features, major bug fixes, and performance enhancements. When evaluating an
upgrade to a newer version, you may have some features you’d like to add and there may be some nagging
bugs you’d like to squash. We have upgraded thousands of instances over the years and we’ve learned a lot.

Here are some reasons it can be painful to upgrade your MongoDB instances:

Downtime
Both minor and major version upgrades can
usually be completed without any downtime,
if your driver is set up to be resilient during
a step down and mongos restart. Timelines
for upgrades depend on many factors, such
as which version you’re currently running,
your applications’ needs, and which features
will offer the most benefit for your app.
Most customers can expect a 30-minute
maintenance window with a 15 second period
of downtime. Contact support for an estimate
based on your set up.

Rewriting code
It’s not uncommon to have to change your
code in order to upgrade. Each new major
version may or may not deprecate query
operators and tools. If you’re using a lot of
features, there’s a good chance some of your
queries will need to changed. Features may
also be shelved but in most cases there is a
replacement feature or a workaround that can
be implemented.

Updating drivers
Since you are using an older version of
MongoDB, your driver might already be
out of date. New drivers offer new features
and can improve your application and user
experience. You might have to update your
driver in advance. Sometimes, this can be
painful because a driver upgrade involves
dependencies so other components/
frameworks might need an upgrade as well.

For all the reasons listed above, we always recommend testing a new major version before upgrading.

22MongoDB Jetpack

Why upgrading is important

There are several reasons to keep upgrading MongoDB. Deprecated versions won’t get backported when
comes to bugs. Each version involves hundreds of bugs. For example, there have been more than 150 bug fixes
related to the database engine and more than 280 other enhancements and improvements for version 3.4
alone. If you’re still not convinced, check out the new features/improvements section for select improvements.

New features/improvements

MongoDB version 3.0

• Introduction of MMAPv1 – MMAP storage engine

• Introduction of WiredTiger

MongoDB version 3.2
• General improvements for the WiredTiger storage

engine.

• Read Concern provides isolation level for reads.

• Partial Indexes provides more flexible indexes and
requires less storage while covering the queries
better. Read our blog: MongoDB Partial Indexes – Is
It Time To Rethink Your Indexing Strategy?

• Document validation provides the capability to
validate documents during updates and insertions.

• Aggregation runs faster on sharded clusters

• Geo Indexes v3 for faster Geo Lookups

Upgrade considerations

Here are some things we look at when
figuring out how long an upgrade to an
instance will take:

 Code language

 Driver version

 Code compatibility, like
 deprecated operators

 MongoDB version constraints
 (dataset compatibility checks)

https://docs.mongodb.com/manual/release-notes/3.2/#readconcern
https://docs.mongodb.com/manual/release-notes/3.2/#partial-indexes
https://www.objectrocket.com/blog/mongodb/mongodb-partial-indexes/
https://www.objectrocket.com/blog/mongodb/mongodb-partial-indexes/
https://docs.mongodb.com/manual/release-notes/3.2/#document-validation
https://docs.mongodb.com/manual/release-notes/3.2/#optimization
https://docs.mongodb.com/manual/release-notes/3.2/#geospatial-optimization

23MongoDB Jetpack

MongoDB version 3.6
You can get the full list of what is available in the MongoDB 3.6 release notes. Here are some of the updates
and changes we wanted to highlight:

Change streams
Tailing MongoDB’s oplog, is a popular feature with
many uses, such as real-time notifications of all the
changes to your database.

WiredTiger
MongoDB 3.6 comes with WiredTiger storage engine
version 3.0.

Client sessions
Client sessions created for applications that require
causal consistency are now better supported.

Retryable writes
Retryable writes allow MongoDB drivers to
automatically retry certain write operations a single
time if they encounter network errors, or if they
can’t find a healthy primary in the replica sets or
sharded cluster.

Bug fixes

Aggregation enhancement
The $lookup operator adds support for specifying
multiple join conditions as well as uncorrelated
subqueries by allowing variable specification and
pipeline execution on the joined collection.

JSON schema operator ($jsonSchema)
enhancement
This operator matches documents that validate
against the given JSON schema.

Wire protocol and compression
The new wire protocol opcode called OP_MSG allows
network compression for communication among
mongod and mongos drivers.

MongoDB version 3.4
• General improvements for the WiredTiger storage

engine.

• Linearizable read concern – Critical to financial/
bank applications for read accuracy.

• Faster balancing – Important for scaling faster.
Move more chunks in parallel.

• Improved initial sync – Makes weekly compaction
to run faster.

• Decimal support – Makes working with decimals
much easier. No workarounds necessary.

• Aggregation stage for recursive search – Important
for commerce applications. Allows faster search.

• Views – Adds another layer of security. Read our
blog: Enhance Your Organization’s Security with
MongoDB Views

• Improved performance and security. In 3.4, there
have been more than 150 bug fixes related to
the database engine and more than 280 other
enhancements and improvements.

Want to spin up a
MongoDB 3.6 instance today?
Head to the app and get started.

https://docs.mongodb.com/v3.6/release-notes/3.6/#release-notes-for-mongodb-3-6
https://source.wiredtiger.com/3.0.0/md_changelog.html
https://source.wiredtiger.com/3.0.0/md_changelog.html
https://docs.mongodb.com/v3.6/reference/mongodb-wire-protocol/
https://docs.mongodb.com/v3.6/reference/mongodb-wire-protocol/#wire-op-msg
https://docs.mongodb.com/manual/release-notes/3.4/#linearizable-read-concern
https://docs.mongodb.com/manual/release-notes/3.4/#faster-balancing
https://docs.mongodb.com/manual/release-notes/3.4/#improved-initial-sync
https://docs.mongodb.com/manual/release-notes/3.4/#decimal-type
https://docs.mongodb.com/manual/release-notes/3.4/#new-aggregation-stage-for-recursive-search
https://docs.mongodb.com/manual/release-notes/3.4/#views
https://www.objectrocket.com/blog/mongodb/enhance-your-organization-security-with-mongodb-views/
https://www.objectrocket.com/blog/mongodb/enhance-your-organization-security-with-mongodb-views/

24MongoDB Jetpack

Open Source Innovators
We’re a leader in open source database management and are well known for
our deep knowledge of NoSQL databases (especially MongoDB, Elasticsearch,
and Redis).

Polyglot Persistence
Using aDBaaS that offers multiple types of databases is critical.
That way, youcan use the right database for your use case, saving time and
money.ObjectRocket manages several types of open source databases so
thatyou can use one vendor for all your needs.

Fast and Secure
We know how to get the most out of host machines to power demanding
workloads. Our platform provides high security while performing millions
of operations per second.

We Grow With You
ObjectRocket was built on the core premise of enabling simple and reliable
scalability for all of our databases. RocketScale™ is an ObjectRocket
technology that automatically adds data nodes as you need them.

Cost Conscious
In June 2017, Crimson Consulting Group released an analysis showing
that contracting with a fully managed DBaaS is a much better value than
managing databases in-house. Crimson noted that ObjectRocket lowers
data management costs by “orders of magnitude.” That’s the kind of
language scientists use to describe the distance between stars.

Contact us today so we can help you travel light years ahead of your competition. SCHEDULE A CONSULTATION

24MongoDB Jetpack

Why choose ObjectRocket?

So, you want to get your payload of data into orbit without crashing your ROI?
Here are some of the top reasons why we think you should meet us on the ObjectRocket launchpad.

https://www.objectrocket.com/contact

About ObjectRocket

ObjectRocket’s technology and expertise helps businesses build better apps,
faster so developers can concentrate on creating applications and features
without having to worry about managing databases. We’ll migrate your data
at no cost and with little-to-no downtime. Our DBAs do all the heavy lifting
for you so you can focus on your builds. We provide 24x7x365 expert support
and architecture services for MongoDB, Elasticsearch, Redis, and Hadoop
instances in data centers across the globe.

© 2018 Rackspace, US Inc. | All trademarks, service marks, images, products and brands remain the sole property of their respective holders. Date Modified: 08/03/2018

