
Elasticsearch Jetpack

Everything you need to know about
Elasticsearch and why DBaaS for
Elasticsearch will save you time,
money, and headaches.

1Elasticsearch Jetpack

What’s Inside

Introduction 2

What is Elasticsearch? 3

Elasticsearch Implementation Methods 8

Who Uses Elasticsearch? 11

Top 5 Use Cases for Elasticsearch 13

Where Elasticsearch and Solr Differ 16

Clustered Elasticsearch - Indexing, Shard, and Replica Best Practices 19

Third Party Map and Tile Services with Kibana 25

Why Choose ObjectRocket? 32

About ObjectRocket 33

2MongoDB Jetpack

Intro

Few databases have performed as well or have become as truly industry-changing

as Elasticsearch. The increase in popularity of Elasticsearch over the past few years

is staggering.

2Elasticserach Jetpack

Read on to learn everything you need to know about Elasticsearch and
why DBaaS for Elasticsearch will save you time, money, and headaches.

3Elasticsearch Jetpack

What is Elasticsearch?

A distributed, real-time, search engine / document store.

Distributed: Easily scales to multiple servers and TBs of data.

Real-time: Data is searchable as it is added.

Search engine: Best full text search capabilities of any technology in this space.

Document store: Less strict schema or SQL-like rigidity. Very JSON-friendly.
Read on to learn about why you

should use Elasticsearch.

4Elasticsearch Jetpack

Databases over time

There is no shortage of stories or analyses about the NoSQL movement and how
it’s driving a lot of expansion and change in the database space. An even more
interesting trend is the increase in both database technologies and database
types over the past couple of decades. Using DB-Engines and a few other online
resources, we’ve mapped out a timeline of database technologies so you can
see when each was introduced:

0 10 20 30 40 50

1990’s

1980’s

1970’s

2000’s

2010’s

Document

Search

Multivalue

Multi-model

Time Series

Column

Relational

Object Oriented

XML

5Elasticsearch Jetpack

There are two major trends :

1 The number of databases

introduced every year has soared

in the last two decades.

2 The number of different

categories (or types) of databases

has also escalated.

The first of these two trends is not terribly surprising. There have been many evolutionary changes in
computing with the internet and open source software over the past 20 years, so one would expect a similar
growth in databases. Sure enough, the total number of databases (and open source databases) has continued
to grow as people develop new technologies to solve a completely new set of challenges.

This brings us to the second trend. As new challenges have risen with data, smart technologies have been
created to fulfill that need. Internet services and big data have driven growth in technologies like Hadoop and
NoSQL. Now we see technologies like IoT driving growth in streaming and time-series databases.

19
9

0
’s

19
8

0
’s

19
7

0
’s

2
0

0
0

’s

2
0

10
’s

6Elasticsearch Jetpack

Out of this growing mess of databases, a few have outperformed and become truly industry-changing. One of those
is Elasticsearch. The increase in popularity of Elasticsearch over the past few years is staggering and can best
be summed up by another few charts from DB-Engines:

In the first image, you can see that Elasticsearch has risen from relative obscurity
in 2013 to surpassing it’s closest rival.

Now you can see that it is jumping into the top 3 or 4 non-relational data stores.
If you compare that against other technologies that had roughly the same
popularity in 2013 (the second image), you will notice how much Elasticsearch has
surpassed them.

7Elasticsearch Jetpack

Elasticsearch strikes back

How did Elasticsearch outperform competitors and other
rising data stores in this time period?
This rapid adoption can be attributed to a few main areas:

These areas all build on each other. The great focus that the product and its
creators have placed on making it easy to bootstrap and use has led to a quickly
growing community of people and products. This active community has created
a massive number of clients, plugins, and additional technologies to ensure
that Elasticsearch is compatible with everything. The fact that Elasticsearch is
compatible with so many technologies has allowed the use cases for Elasticsearch
to rapidly expand.

Looking at the timeline of the Elasticsearch community’s launches and
acquisitions over the past few years, you see a core focus on search, then
expansion into logging with Logstash, then added visualization with Elasticsearch
Kibana, expansion into analytics with aggregations, then into monitoring with
Beats. That is a huge amount of use case expansion in a small period of time.

All of these features have been getting more established and more robust over
time. Meanwhile Elastic.co, as a company, has really focused on beefing up a lot
of these capabilities with their acquisitions of Found, Packetbeat, Prelert, Opbeat,
and most recently, Swifttype. This doubling down and moving up the stack in the
key use case areas is key to Elastic’s success.

Ease of use
The Elasticsearch

community

Compatibility Broad use cases

8Elasticsearch Jetpack

Elasticsearch
Implementation Methods

All of this expansion has created a few interesting adoption models for
Elasticsearch. Let’s review some of these adoption models.

9Elasticsearch Jetpack

Main datastore

“I want to build an app/feature,

so I choose Elasticsearch as the datastore.”

This first model is pretty tried and true, and reflects
the usual method of database adoption.

Complementary technology

“I want to add visualization to SQL/

MongoDB/etc, add indexing to Hadoop, add

processing/storage to Kafka, etc.”

This model covers a fairly untapped market. There
have been many companies selling enhancements to
databases, but none come to mind that can handle
so many disparate uses with the same technology.

Additive technology

“I’m already shoving my logs into

Elasticsearch, why not add metrics,

monitoring, etc.”

This final, additive technology path, is the most
disruptive thing Elasticsearch does. Elasticsearch
can get in the door as either an add-on, or small

part of the app. From there, it grows exponentially
as people get comfortable with it and see how

flexible it is.

1 2 3 1 2 3 1 2 3

Adoption Models

10Elasticsearch Jetpack

The Innovator’s Dilemma
Elasticsearch challenges many other players in the market. The technology very
closely matches the disruptive technology model from “The Innovator’s Dilemma”.
We see Elasticsearch meeting the needs of many basic uses and quickly working
up the stack to add capabilities that nip at the heels of bigger players in the
monitoring, log analysis, analytics, and enterprise search markets. Not only is
Elasticsearch doing this in one use case, it’s doing it in multiple areas.

Time

P
ro

d
uc

t
P

er
fo

rm
an

ce

Performance demanded at
the low end of the market or

in a new emerging segment

Performance demanded at
the high end of the market

Progress due to disruptive technologies

Progress due to sustaining technologies

Innovator’s Dilemma.
Disruptive vs. Sustaining Technologogies: Accessed 10/24/17.
http://web.mit.edu/6.933/www/Fall2000/teradyne/clay.html

11Elasticsearch Jetpack

Who Uses Elasticsearch?

Customers across industries enjoy Elasticsearch.

12Elasticsearch Jetpack

Elasticsearch is becoming a disruptive
“utility” database.

Elasticsearch excels in a very niche area: search. The key to the growth is their
expansion of use cases outward over time. It all started with Logstash and Kibana
and now they’re doubling down and seriously improving analytics and monitoring
capabilities. One of the most compelling aspects of Elasticsearch is its ability to
cover up the shortcomings of other databases and its ability to play as an add-on
vs. a replacement. (For example, search for Hadoop, visualization for Mongo, etc.) Visualization

Timelion
Kibana

Analytics
Aggregations

Logstash
Filebeat
Curator

Log Analysis
Packetbeat
Metricbeat
Alerting

Monitoring

13Elasticsearch Jetpack

Top 5 Elasticsearch Use Cases

Other than “You Know, for Search”, the uses of Elasticsearch continue to grow and
change over time. We at ObjectRocket have been offering hosted Elasticsearch on
the ObjectRocket platform for a while now and have been able to see some clear
trends among our customers and how they’re using the product.

Read on to read about the 5 use cases that we see on our platform.

14Elasticsearch Jetpack

1

Logging and Log Analysis

For anyone familiar with Elasticsearch, this one
should be no surprise. The ecosystem built up
around Elasticsearch has made it one of the easiest
to implement and scale logging solutions. Many of
the users on our platform are no different and have
taken advantage of this to either add logging to their
main use case, or are using us purely for logging.

From Beats, to Logstash, to Ingest Nodes, Elasticsearch
gives you plenty of options for grabbing data
wherever it lives and getting it indexed. From there,
tools like Kibana give you the ability to create rich
dashboards and analysis, while Curator allows you to
put the retention period on autopilot.

2

Scraping and Combining
Public Data

Like log data, the Elastic Stack has plenty of tools
to make grabbing and indexing remote data easy.
Also, like most document stores, the lack of a strict
schema gives Elasticsearch the flexibility to take in
multiple different sources of data and still keep it
all manageable and searchable. A cool example of
this that you can check out is our Twitter connector,
which allows you to set up hashtags to watch on
Twitter and then grab all tweets with those hashtags
and analyze them in Kibana. We built that product
on core Elastic Stack components and added some
additional pieces to help it scale.

3

Full Text Search

It’s also no surprise that full text search, as the core
capability of Elasticsearch, is high on this list. The
surprising part is the applications of this among
our customer set, which go well beyond traditional
Enterprise search or E-commerce. From fraud
detection/security to collaboration and beyond,
our users have shown that Elasticsearch’s search
capabilities are powerful, flexible, and include
a great number of tools to make search easier;
Elasticsearch has its own query DSL as well as built
in capabilities for auto-complete, “Did you mean”
responses, and more.

15Elasticsearch Jetpack

ObjectRocket can help you set up a
new Elasticsearch instance or help
you configure your current one for
the support your applications need.

Conclusion
We haven’t included every use case. Elasticsearch and the rest of the
Elastic Stack have proven to be extremely versatile. There are multiple
ways to integrate Elasticsearch into what you’re doing today and gain
extra insight. That’s the coolest part of Elasticsearch: the ability to
enhance the technologies you’re already using rather than just another
database to store your data.

4

Event Data and Metrics

Elasticsearch also operates really well on time-series data like metrics and
application events. This is another area where the huge Beats ecosystem allows
you to easily grab data for common applications. Whatever technologies you
use, there’s a pretty good chance that Elasticsearch has the components to grab
metrics and events out of the box… and in the rare case that it can’t, adding that
capability is really easy.

5

Visualizing Data

With tons of charting options, a tile service for geo-data, and TimeLion for time-
series data, Kibana is an amazingly powerful and easy to use visualization tool. For
every use case above there is some visual component handled by Kibana. Once
you’re comfortable with the various data ingest tools, you’ll find that Elasticsearch
+ Kibana will become your go-to tool for visualizing data that you’re trying to wrap
your head around.

SCHEDULE A CONSULTATION

https://www.objectrocket.com/contact/

16Elasticsearch Jetpack

Where Elasticsearch and Solr Differ

Now that businesses have shifted toward “big data,” people want access to more information than ever before,
which means more new databases. It’s become absolutely crucial for businesses to harness “big data” to make
informed decisions about customers and their needs based on data analysis.

One of the challenges businesses face when using databases is getting the information they need out of it. All of
the data in the world isn’t going to do much to help you unless you can draw insights from your data and effectively
search that data. That’s where tools like Elasticsearch and Solr come in. Read on to find out which of these tools is
best suited to your needs.

17Elasticsearch Jetpack

It all starts with Apache Lucene

Solr and Elasticsearch share a common heritage; Both were created to provide a
high-level search engine built on Apache Lucene. Lucene is an extremely powerful
search library, but is difficult to use for newcomers and doesn’t provide a stand-
alone search application with REST APIs and more. Elasticsearch and Solr fill in
those gaps and provide a whole lot more. Both offer an effective way to retrieve
the information you need from your database, without having to understand all of
the ins and outs of Lucene itself. Most of the work is done for you, so searching for
information becomes really simple.

Essentially, these tools take index data as it’s placed inside them, making it easier
to retrieve or reference that information. Both Solr and Elasticsearch are popular
tools with large, active communities (so there’s plenty of help to be had on sites
like Stack Overflow in the event something is amiss). The most common use for
Solr and Elasticsearch is for enterprise search and providing search, wherever it’s
needed, like search on a company’s website.

Read on to find out why Elasticsearch

has the advantage over Solr.

18Elasticsearch Jetpack

The Elasticsearch advantage

If all you’re looking for is a search function you can integrate into your website,
then either Elasticsearch or Solr will do. The difference is only evident when you
try to scale or do more with the tool you’ve chosen.

Built-in Clustering
One of the initial advantages of Elasticsearch is the built-in clustering.
Elasticsearch makes the creation, scaling, and management of the cluster a
lot easier because it’s all neatly rolled into the product. This has been a focus
of Elasticsearch from the beginning. Elasticsearch clusters provide a lot more
capabilities to manage and scale the cluster than Solr does. Solr requires external
tools, like Zookeeper, to manage the cluster. Plus Solr didn’t really offer the
scalability of Elasticsearch until SolrCloud was launched and it just hasn’t
caught up.

Beyond Search
When you look at the functionality of both products, Solr’s features don’t really go
far beyond the search function—that’s its primary focus. So if you’re hoping to do
something with the data you pull into a search, Solr isn’t the tool you want.

Elasticsearch has spent the last few years expanding the use cases. An entire
ecosystem has formed around Elasticsearch that provides additional capabilities,
called the Elastic Stack. The Elastic Stack includes tools for grabbing data (Beats),
processing/transforming data (Logstash), visualizing data (Kibana), and more. In
other words, Elasticsearch can provide functionality that’s normally reserved for
expensive business intelligence suites.

In the end, Elasticsearch took the costs involved in developing a tool
in-house or paying for a third-party Business Intelligence (BI) tool, and
threw it aside. For anyone in need of BI and looking to save tens of
thousands, it’s a great option.

19Elasticsearch Jetpack

Clustered Elasticsearch –
Indexing, Shard, and Replica
Best Practices

Some of the most common sources of support tickets we see on the ObjectRocket
for Elasticsearch platform are related to indexing, shard count, and replication
decisions.

Read on for best practices for

indexing, sharding, and replicas

for Elasticsearch.

20Elasticsearch Jetpack

When you’re first starting out, Elasticsearch is awesome at spreading data across your cluster with the default
settings. Once your cluster begins to grow, the defaults can get you in trouble. Let’s go over some of the basics
of sharding and provide some best practices for indexing and shard count.

An intro to Elasticsearch sharding

The rules
Each shard is replicated based on the number_of_
replicas setting for the index. E.g. For a number_
of_replicas setting of one, there will two copies of
each shard: one primary shard + one replica shard.
The primary shard is the main shard and used for
indexing/write and search/read operations, while
the replicas are used only for search/read operations
and for recovery if a primary fails.

The basic concept of sharding is splitting up the your data into a number of chunks so that searches can
operate on multiple parts in parallel. In order to facilitate clustering and parallelization of index functions, each
index in your Elasticsearch instance is sliced up; These slices are called shards. Let’s look at some of the key
behaviors for shards.

• Replica shards must reside on a different host than their primary.

• By default, shards are automatically spread across the number of hosts in the cluster, but multiple
primary shards can be placed on the same physical host. There are a number of Elasticsearch
settings to modify this behavior (e.g. rebalancing, where shards are allocated, etc.).

• Shards can not be divided further. Each individual shard must reside on only one host.

• The number of shards can be set during index creation or you can use a global default. Once the
index is created, the number of shards cannot be changed without reindexing.

• The number of replicas per index can be set either during index creation or a global default can be
used. This CAN be changed after the index is created.

21Elasticsearch Jetpack

Here’s an index created with a shard count of three
and a replica setting of one. As you can see in the
diagram above, Elasticsearch will create 6 shards for
you: Three primary shards (Ap,Bp, and Cp above),
and three replica shards (Ar, Br, and Cr).

Elasticsearch will ensure that the replicas and
primaries will be placed on physically different
hosts, but multiple primary shards can and will be
allocated to the same host. Now that we’re talking
hosts, let’s dive into how shards are allocated to
your hosts.

Now that we’ve set some ground rules, let’s look at a small example.

Index 1

Ap Ar

Bp Br

Cp Cr

22Elasticsearch Jetpack

1 Using our example above, let’s take those
six shards and assign them to an ObjectRocket
for Elasticsearch cluster with 2 data nodes (the
minimum). For each shard, the primary will land on
one data node, while the replica is guaranteed to be
on the other node.

Shard allocation and clustered Elasticsearch

By default, Elasticsearch will attempt to allocate shards across
all available hosts. At ObjectRocket, each cluster is made up
of master nodes, client nodes, and data nodes. It’s the data
nodes in our architecture that form the “buckets” that the
shards can be assigned to.

Keep in mind that the examples here show just one possible allocation, the only
thing that’s definite is that a replica will always be placed on a different data
node than its primary.

CLUSTER

INDEX 1

NODE 1

Ap

Br

INDEX 1

NODE 2

Bp

Cr

CLUSTER

INDEX 1

NODE 1

Ap

Br

INDEX 1

NODE 2

Bp

Cr

INDEX 1

NODE 3

Ar

Cp

CLUSTER

INDEX 1

NODE 1

Ap

Br

INDEX 2

Xp

Yr0

INDEX 1

NODE 2

Bp

Cr

INDEX 2

Xr0

Yr1

INDEX 1

NODE 3

Ar

Cp

INDEX 2

Xr1

Yp

 2 Now, let’s extend this example and add a third
data node. What you see is that two shards will be
moved to the new data node. You’re now left with 2
shards on each node.

3 Finally, let’s add a new index to this cluster with a
a shard count of two and the number of replicas set
to two. What you’re left with is two new primaries
(Xp and Yp) and four replicas (Xr0, Xr1, Yr0, Yr1),
that could be spread across the cluster as seen in
the picture.

Index 1

Ap Ar

Bp Br

Cp Cr

That’s it. Elasticsearch does all of the hard
work for you, but there are some pitfalls to
look out for.

23Elasticsearch Jetpack

The most common (and easiest to mitigate) issue in
Elasticsearch is a massive index with massive shards.
We see this a lot. A user starts out with a very
manageable single index and as their application
grows, so does their index. This then leads to huge
shards because shard size is directly related to the
amount of data in the cluster.

The first issue this causes is poor efficiency in cluster
utilization. As the shards get larger and larger, they
get harder to place on a data node since you’ll need
a large block of free space on a data node to place a
shard there. This leads to nodes with a lot of unused
space. For example, if I have 8GB data nodes but
each shard is 6GB, I’ll be stranding 2GB on each of
my data nodes.

The second issue is “hot spotting”. If your data is
consolidated into few shards then complex queries
will not have the opportunity of being split across a
larger number of nodes and executing in parallel.

Don’t be stingy with indexes

The first and easiest solution is to use multiple
indexes. Spreading your data across multiple indexes
will increase the number of shards in the cluster and
help spread the data a little more evenly. In addition
to just an easier game of “Tetris” when Elasticsearch
places shards, multiple indexes are easier to curate.
Also, the alias capabilities in Elasticsearch can still
make multiple instances look like a single index to
your app.

Most of the Elastic Stack will create daily indexes
by default, which is a good practice. You can then
use aliases to limit the scope of searches to specific
date ranges, curator to remove old indexes as they
age, and modify index settings as your data grows
without having to reindex the old data.

Increase shard count as your index size increases

In addition to adding indexes more frequently, you can
also increase the shard count as your index sizes start
to increase. Once you see shard sizes starting to get
a little too large, you can update your index template
(or whatever you use to create new indexes) to use
more shards for each index. However, this only helps
if you’re regularly creating new indexes, which is why
this recommendation is listed second. Otherwise,
you’ll have to reindex to modify shard count, which is
not impossible, but a little more work than managing
multiple indexes.

Our rule of thumb here is if a shard is larger than 40%
of the size of a data node, that shard is probably too
big. In this case, we recommend reindexing to an index
with more shards, or moving up to a larger plan size
(more capacity per data node).

PITFALL #1 Massive Indexes and Massive Shards

24Elasticsearch Jetpack

The inverse of pitfall #1 is far too many indexes or
shards. After reading the previous section, you may
just say “Fine, I’ll just put every doc in its own index
and create a million shards”. The problem is that
indexes and shards have overhead. That overhead
manifests itself in storage/memory resources as well
as in processing performance.

Since the cluster must maintain the state of all
shards and where they’re located, a massive number
of shards becomes a larger bookkeeping operation
which will have an impact on memory usage. Also,
since queries will need to be split more ways, there
will be a lot more time spent in scatter/gather for
queries.

This one is a little harder to give exact guidance on,
since it is highly dependent on the size of the cluster,
use case, and a few other factors, but in general we
can mitigate this with a few recommendations.

Shards should be no larger than 50GB
In general, 25GB is our target for shard size. 50GB is
where we have the conversation with our customers
about reindexing. This has as much to do with the
performance of the shard itself as it does with
the process of moving that shard when you need
to. Whenever rebalancing, shards may need to be
moved to a different node in the cluster. Moving
50GB of data can take a significant amount of time
and then you’ve got that capacity tied up on two
nodes during that entire process.

Keep shard size less than 40% of data node size
The second metric we look at for shard size is what
percentage of the data node capacity a shard takes
up. On the ObjectRocket service, we offer different
plan sizes that are related to the amount of storage
on the data nodes. We try to size the cluster and
the shards to ensure that each of the largest shards
don’t take up more than 40% of a data node’s
capacity. In a cluster with a number of indexes at a
mix of sizes, this is fairly effective, but in a cluster
with a single or very few indexes that are very large,
we are even more aggressive and try to keep this
below 30%.

The idea here is to make sure that you’re not
stranding capacity on a data node. If your shards
are 45% the size of the data node, for example,
you’ll need a data node at roughly half utilization
to be able to place that shard. That’s a lot of spare
capacity to leave lying around!

Conclusion

Selecting the right shard and indexing
settings can be a moving target, but
by planning ahead, making some good
decisions up front and tuning as you go,
you can keep your cluster healthy and
running optimally. We help businesses
refine their Elasticsearch instances all
the time. Contact us for an Elasticsearch
with Kibana consultation with our
Elasticsearch DBAs.

PITFALL #2 Too many indexes/shards

25Elasticsearch Jetpack

Third Party Map and Tile Services
with Kibana

Out of the box, Kibana includes the ability to display geo-data on maps provided by Elastic’s tile service.
This provides a great introduction to what Kibana can do, but the maximum zoom level is limited if you
don’t have access to X-Pack.

Read on to learn about your third party options.

26Elasticsearch Jetpack

Using Elastic’s tile service, the maximum zoom for ObjectRocket’s home base of
Austin, Texas is:

Why Use a Different Mapping Service?

The Elastic tile service is a great benefit to all users, but there may be times you
want to diverge from the default service. Here are a few:

• You want to zoom further to street-level data

• You want to add new layers or provide a different map style

• You want a fully custom map, like the inside of a building, for example

What these all boil down to is finding a server that provides the data you want and
then configuring Kibana to use that server.

Unfortunately, Kibana can cause a bit of confusion because it can leverage two
completely different types of map services. I’ll introduce those before we jump
into how to use them. By default, Kibana draws maps from a Tile Map Service, or
TMS. Tile services chop up maps into square tiles that can be accessed by their
coordinates and zoom level. This is what Elastic provides with their service and
this is configured globally in the kibana.yml configuration file. An alternate way to
display maps in Kibana is to use a WMS-compliant Map Service, or WMS. A web
map service operates using a different protocol and generates maps from data in
a GIS database. This can be set from within the Kibana UI.

The good news is that it’s easy enough to configure Kibana to use another tile
service or WMS compliant mapping server.

27Elasticsearch Jetpack

Using Third Party Map Services

There are a number of commercial map services out there, as well as free data sources for creating maps like
OpenStreetMap. For testing purposes, there are free tile services based on OpenStreetMap, like Stamen, that
you can test with. On the WMS side, there are also some free map servers for testing, like the National Map in
the US. Finally, there are options for setting up your own mapping service, which I’ll cover later.

The first setting is the url for the tile service and
follows the usual endpoint/{z}/{x}/{y}.jpg/png format
that standard tile services use. Note that Stamen has
a number of cool styles, like ‘toner’ and ‘watercolor’,
that you can use by replacing ‘terrain’ in the url. The
second setting is the maximum number of zoom
settings. Some services don’t advertise this, so it will
just require a little trial and error. Finally, and very
importantly is properly attributing the maps to the
creator. The attribution markdown will be displayed
in the lower right corner of the map visualization.

tilemap.url: “https://stamen-tiles.a.ssl.fastly.net/terrain/{z}/{x}/{y}.jpg”

tilemap.options.maxZoom: 20

tilemap.options.attribution: ‘Map tiles by [Stamen Design](http://stamen.

com), under [CC BY 3.0](http://creativecommons.org/licenses/by/3.0). Data by

[OpenStreetMap](http://openstreetmap.org), under ODbL(http://www.openstreetmap.org/

copyright).’

Setting up Kibana to use a different tile service
Once again, by default mapping for Kibana is based off of a tile service. Stamen, which is mentioned above, is
one of my favorite free to test services and offers a number of sharp map styles, so we’ll test with that.

You’ll need access to your kibana.yml file to make this change, so if you’re on a hosted service, like ObjectRocket
for Elasticsearch, you can use a local kibana install to test it out first. Once you’ve located the kibana.yml file,
you’ll add the following entries:

28Elasticsearch Jetpack

Once that’s set and you restart Kibana, you’ll now see that you can zoom a lot
further and get some pretty cool stylized maps.

Compare the picture on right to the one on the left:

29Elasticsearch Jetpack

Connecting to a WMS Map from Kibana

The configuration is a little different for a WMS map and must be set within
Kibana itself, rather than from the configuration file. For this example, I’ll use the
United States Geological Services’ National Map. Specifically transportation maps
so we can play with the different layers available.

1 First, you’ll need to load up a coordinate map visualization in Kibana and then
click the “options” button. From there, you’re going to select “WMS compliant
map server.”

2 Once you select that, a bunch of new settings will display. You’ll need to fill
in the URL for the WMS server, which layers to use, which version of the WMS
standard the server is running, image type to load, and what styles to use. These
settings are described in the Kibana documentation.

30Elasticsearch Jetpack

This is a bit more complicated than the tile service which just takes a few
coordinates, but luckily the map service we’ll use has some tools built in. First of
all, if you go to the Nationalmap page, it will give you a nice description page of
the map and its features. This page describes the map and all of its layers. If you
want more details about the maps capabilities, click on the little WMS link at the
top, and you’ll see some detailed XML of the server’s capabilities, like version,
image formats supported and more.

3 Based on this information and the WMS link, we’ll use the following settings
for this map:

• WMS url: https://services.nationalmap.gov/arcgis/services/
transportation/MapServer/WMSServer

• WMS layers: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36

• WMS version: 1.3.0

• WMS format: image/png

• WMS attribution: Provided by the United States Geological Service
(Nationalmap.gov)

• Styles: blank

One note about the layers. It looks like the map we’re using has a hierarchy of
layers, but there’s no shorthand I can find for calling all of them out so just list out
the individual layers.

If you have that all set up, you should now be able to see a view like this:

 The WMS settings can also be set as a default for all visualizations in the Kibana
Advanced Settings screen.

31Elasticsearch Jetpack

Setting Up Your Own Map or Tile Server

On a final note, once you want to take this into production, running your own tile/
map server may be the way to go. You can do fully custom maps, like an NHL rink,
or create street maps or topographical maps from something like OpenStreetMap
and apply your own layers. There are great open source tools like geoserver which
is mentioned in the Elastic blog, or TileCache that all provide tutorials and detailed
docs on how to get started. Also, OpenStreepMap provides tons of information in
their wiki to help you get started along with the site SWITCH2OSM that provides
resources to get started on serving OpenStreetMap data.

Interested in what Elasticsearch can do for your app?
We offer fully managed and hosted Elasticsearch instances complete with DBA
experts that can help you get the most from Elasticsearch and Kibana without
tying up your development resources. Contact us for a consultation.

WHY MANAGED ELASTICSEARCH FROM OBJECTROCKET?

The ObjectRocket Difference,
in a word, expertise.

Alen Durbuzovic
CTO, Chive Media Group

Read This Case Study

With ObjectRocket, we don’t have to be
Elasticsearch experts. We rely on them to make
recommendations and to keep things running and
performing optimally.

“
LEARN MORE

31Elasticsearch Jetpack

1 Single-tenant dedicated Elasticsearch
 Every customer instance runs on 11+ dedicated containers, each
 running their own Elasticsearch or Kibana process.

2 Plugins
 Our clusters include common plugins and dashboards,
 like Kopf, ElasticHQ, mapper-attachments, and more.

3 Get the best proactive hands-on support, hands-down.

https://www.objectrocket.com/contact/
https://www.objectrocket.com/wp-content/uploads/2018/05/OR_TheChive_CaseStudy_051018.pd
https://www.objectrocket.com/braze-case-study/
http://www.objectrocket.com.

32Elasticsearch Jetpack

Open Source Innovators
We’re a leader in open source database management and are well known for
our deep knowledge of NoSQL databases (especially MongoDB, Elasticsearch,
and Redis).

Polyglot Persistence
Using aDBaaS that offers multiple types of databases is critical.
That way, youcan use the right database for your use case, saving time and
money.ObjectRocket manages several types of open source databases so
thatyou can use one vendor for all your needs.

Fast and Secure
We know how to get the most out of host machines to power demanding
workloads. Our platform provides high security while performing millions
of operations per second.

We Grow With You
ObjectRocket was built on the core premise of enabling simple and reliable
scalability for all of our databases. RocketScale™ is an ObjectRocket
technology that automatically adds data nodes as you need them.

Cost Conscious
In June 2017, Crimson Consulting Group released an analysis showing
that contracting with a fully managed DBaaS is a much better value than
managing databases in-house. Crimson noted that ObjectRocket lowers
data management costs by “orders of magnitude.” That’s the kind of
language scientists use to describe the distance between stars.

Contact us today so we can help you travel light years ahead of your competition. SCHEDULE A CONSULTATION

32Elasticsearch Jetpack

Why choose ObjectRocket?

So, you want to get your payload of data into orbit without crashing your ROI?
Here are some of the top reasons why we think you should meet us on the ObjectRocket launchpad.

https://www.objectrocket.com/contact/

About ObjectRocket

ObjectRocket’s technology and expertise helps businesses build better apps,
faster so developers can concentrate on creating applications and features
without having to worry about managing databases. We’ll migrate your data
at no cost and with little-to-no downtime. Our DBAs do all the heavy lifting
for you so you can focus on your builds. We provide 24x7x365 expert support
and architecture services for MongoDB, Elasticsearch, Redis, and Hadoop
instances in data centers across the globe.

© 2018 Rackspace, US Inc. | All trademarks, service marks, images, products and brands remain the sole property of their respective holders. Date Modified: 08/09/2018

