
ObjectRocket™ for Redis | Cover

for Redis®

Highly Available, Fast, Scalable, Fully Managed

ObjectRocket™ for Redis | Contents

Table of Contents

1.	 Introducing ObjectRocket for Redis	 1

2.	 Challenges of Managing and Optimizing Redis	 3
		 Tuning and Architecture Missteps Impact Performance	 3
		 Managing Redis Strains Technical Resources	 3
		 Achieving High Availability Is Difficult	 3
		 Generic Public Cloud Servers 	
		 Yield Inconsistent Performance	 4
		 Scalability Is Risky and Expensive	 4

3.	 Benefits of ObjectRocket for Redis	 5
		 Simplified Management	 5
		 Fully Managed Solution with Fanatical Support	 5
		 Suite of Operations Tools	 6
		 Optimized Redis Performance	 7
		 Enhanced Load Balancery	 8
		 Improved Stability and Availability
		 with Guaranteed Uptime	 8
		 Smart Provisioning and Fully
		 Redundant Infrastructure	 8
		 Automatic Replication and Failover	 8
		 User-controllable Persistence	 9
		 Free, Automated Backups	 9
		 Industry Leadingg SLAs	 9
		 Built-in Security	 10
		 Easy, Powerful Scalability	 10
		 Data and Application Portability	 11
		 Flexible Deployment Options

4.	 ObjectRocket vs. Unmanaged Hosting	 12

5.	 Common Use Cases	 13

6.	 Conclusion	 16

ObjectRocket™ for Redis | Page 1

1.	Introducing ObjectRocket™ for Redis®

Redis is an open source, in-memory, key-value cache and store database that offers

exceptionally high read and write speeds, helping developers deliver application

performance that meets the high expectations of today’s users.

Unlike earlier key-value data stores such as Memcache, Redis allows for persistence on

disk. This enables developers to use it as a standalone database or pair it with on-disk

relational databases (such as MySQL) or NoSQL databases (such as MongoDB) when

necessary. In either case, Redis is perfect for increasing speed and throughput for

workloads with high performance requirements.

Often described as a data structure server, Redis supports several different data

structure types including strings, hashes, lists, sets, sorted sets, HyperLogLog and

bitstrings. While Redis specializes in quickly retrieving data, doing so requires the

appropriate data structure types, all optimized for each specific use case. And although

Redis supports proven large-scale deployments like Twitter, Tinder and MapMyFitness,

it’s still a developing technology.

Given these obstacles, many developers and database administrators discover that

fine-tuning Redis proves unexpectedly challenging. Identifying mistakes and making

smart adjustments can strain scarce development and IT resources. In addition, finding

engineers with the real-world experience required to properly configure and manage

Redis can be costly and time-consuming.

ObjectRocket for Redis is a managed database-as-a-service platform built from the

ground up to help businesses overcome these challenges. Engineered specifically

for Redis, the ObjectRocket platform simplifies application development by offering

optimized, preconfigured Redis instances in the cloud, backed by award-winning

Fanatical Support® from Rackspace.

As a fully managed solution, ObjectRocket offers developers access to Redis experts on

staff who manage everything from the infrastructure to the configuration, while also

providing access to tools like automated availability.

ObjectRocket™ for Redis | Page 2

By combining purpose-built technology with leading Redis expertise, the ObjectRocket

platform enables developers to benefit from the speeds, scalability and flexibility of

Redis for use cases like full-page caching, session stores, leaderboards and more.

It offers:

1.	Simplified management

2.	Optimal performance

3.	Easy, powerful scalability

4.	Reliable availability, stability and redundancy

5.	Data and application portability

6.	Flexible deployment options

Ultimately, ObjectRocket for Redis simplifies application development and enables

optimal performance and reliability while freeing technical resources to focus on

innovation and creativity rather than database management. This allows enterprises

and startups to easily improve the underlying speed of web applications, enabling

faster time-to-market and the opportunity to focus on development activities that truly

differentiate the business and build a lasting competitive edge.

ObjectRocket™ for Redis | Page 3

2.	Challenges of Managing, Scaling
and Optimizing Redis

Redis holds great promise for developers looking to improve the performance and

reliability of their websites and applications. However, maximizing speed and ensuring

consistency in the public cloud may present many complex challenges.

TUNING AND ARCHITECTURE MISSTEPS IMPACT PERFORMANCE

Due to its flexibility, Redis can pose significant difficulties for developers who lack expertise

in performance tuning and architecture design. Since Redis acts more like a data structure

server, it requires developers and engineers to determine how data is best represented —

whether in simple key-value strings, lists, hashes, sets or sorted sets. Each data type must

be optimized for specific use cases.

For instance, storing hundreds of thousands of jobs in a list and attempting to retrieve jobs

in alphabetical order will be frustratingly slow. As another example, the replication timeout

in Redis is set to 60 seconds by default, which may be far too long or not long enough

when working with slow-performing storage, large data sets or strict network bandwidth

limitations.

MANAGING REDIS STRAINS TECHNICAL RESOURCES

Without dedicated engineers with Redis experience, developers may find themselves

spending too much time configuring Redis, troubleshooting bottlenecks and rethinking

data structure decisions — instead of writing code. In addition to slowing time-to-market,

this can reduce application quality and deprive technical contributors of the time they need

to pursue new ideas. However, because engineers with Redis experience are in such high

demand, finding, hiring and retaining them is time-consuming and expensive.

ACHIEVING HIGH AVAILABILITY IS DIFFICULT

In an increasingly globalized, online world — where even brief periods of downtime

can seriously damage both revenue and reputation — high availability has become a

requirement for nearly any application. However, manually configuring Redis for high

availability and automatic failover is a tedious, highly involved process requiring expertise in

the fundamental concepts and techniques of high availability. Redis requires a significant

time investment from engineers who have a deep understanding of its complex,

distributed Sentinel system — as well as application code, in many cases, to handle

failover incidents.

ObjectRocket™ for Redis | Page 4

GENERIC PUBLIC CLOUD SERVERS YIELD INCONSISTENT PERFORMANCE

Ensuring fast, consistent database performance is difficult on the public cloud. As with

any high I/O database workload, performance on Redis is particularly impacted by

noisy neighbor problems (i.e., shared network space). Spikes in multi-tenant utilization

not only slow down query speeds, but also make them unpredictable and difficult

to code around. As a result, applications that rely on generic public cloud databases

experience inconsistent performance. This makes it difficult for businesses to fully

realize the performance potential of Redis, which is often the reason they decide to use

it in the first place.

SCALABILITY IS RISKY AND EXPENSIVE

Because Redis is an in-memory database, scaling the system to meet growing user

demand requires developers to carefully manage memory usage. For example, if a

database stores 512 kilobytes of data in Redis for each user and the user base grows by

a million users over the course of a month, the database would require the addition of

nearly 500 gigabytes of RAM in a short timeframe.

Redis includes built-in, space-saving optimizations, and there are also various tactics

available, such as cleaning out unnecessary keys. Many developers lack the time

and expertise to take advantage of these measures. As a result, expanding the

infrastructure becomes unexpectedly expensive as developers either add multiple Redis

servers (and application code), or migrate to larger servers for increased live memory

capacity.

ObjectRocket™ for Redis | Page 5

3.	Benefits of ObjectRocket
ObjectRocket helps businesses resolve these challenges by simplifying database
management and ensuring performance on an infrastructure optimized
specifically for Redis. By minimizing the hassles, risks and expense of managing
Redis in-house, both startups and Fortune 500 enterprises alike can realize
faster time-to-market and lower overhead costs. This, in turn, creates a distinct
competitive advantage.

SIMPLIFIED MANAGEMENT

To ease the burden of managing Redis, ObjectRocket offers:

	 • Configuration and maintenance managed by Redis experts

	 • Fanatical Support® to ensure scalability and optimal performance

		 for every use case

	 • A suite of custom tools for easy deployment, management and automation

FULLY MANAGED SOLUTION WITH FANATICAL SUPPORT

ObjectRocket provides a fully managed Redis solution backed by industry-leading

Fanatical Support, so that Rackspace engineers with Redis experience can enhance your

development team’s efforts. This allows businesses to free up their internal technical

resources so they can focus on innovation and development.

In addition to expert support 24 hours a day, seven days a week, 365 days a year,

Fanatical Support provides developers with the assistance they need around architecture

design, optimization and configuration. This helps their websites and applications achieve

the performance they expect. It also includes assistance with leveraging Redis data types,

performance tuning, issue diagnostics and security configurations (access control list,

accounts, etc.).

ObjectRocket for Redis also provides tools and assistance with scaling. Via the

ObjectRocket UI, customers can change the size of their instance(s). Redis experts can also

assist developers with resizing if they need help or have questions.

“…ObjectRocket for

Redis also provides

tools and assistance

with scaling. Via

the ObjectRocket

UI, customers can

change the size of

their instance(s).”

ObjectRocket™ for Redis | Page 6

Fanatical Support includes assistance for disaster recovery planning and business continuity.

Support experts assist in locating and accessing a backup file in the event of an instance

restoration. Business continuity services also include:

•	 Advanced administration, monitoring and alerts

•	 Recommended and planned replication to the disaster recovery site

•	 Participation in DNS management for failover to the disaster recovery site

•	 Participation in disaster recovery RTO (recovery time objective) and RPO (recovery

point objective) requirements

In addition, ObjectRocket engineers offer guidance to ensure optimal data structure for

each use case. For example, there may be cases where using hashes instead of lists can

increase performance. Migration services make it easy to get started, and it’s all backed by

industry-leading SLAs.

Lastly, ObjectRocket experts help developers stay current on Redis. This includes managing

updates of Redis versions, patching and direct communication and escalation to Redis on

bugs and feature requests.

SUITE OF OPERATIONS TOOLS

The ObjectRocket platform includes a range of back-end functions like automated

deployment as well as operations tools that simplify the management of Redis.

Functionality includes:

•	 3-click deployment. Automated deployment enables developers to deploy Redis

instances in just three clicks.

•	 Easy-to-use interface. An intuitive user interface enables developers to easily

manage their infrastructure and tools.

•	 Automated replication. Spinning up a Redis instance with ObjectRocket includes

generation of a second instance which acts as the replica. All master instance data

are then replicated to this slave instance.

•	 High availability with automatic, nearly transparent failover by default. Redis

Sentinels are used to monitor the instances and, when necessary, initiate a failover

process where a slave is promoted to master and applications using the Redis server

simply use a standard reconnect process to transparently pick up the change. This

requires no Sentinel-aware code in your application.

•	 Monitoring, alerting and reporting. Consistent observation helps ensure ongoing

optimal performance.

ObjectRocket™ for Redis | Page 7

OPTIMIZED PERFORMANCE

Making applications run fast is one of the major selling points of Redis. Optimizing

the infrastructure to realize that benefit is crucial. Every aspect of ObjectRocket, from

infrastructure to configuration, has been architected specifically to maximize the fast

speeds available with Redis. This resolves the inconsistencies and frustrations that

developers typically experience when running databases like Redis on generic public cloud

servers. For instance, if a database typically performs at a consistent speed, developers are

able to code around it. But if speeds rise and fall unpredictably between two and 1,000

milliseconds on the generic public cloud server, application problems arise.

To resolve public cloud inconsistencies, ObjectRocket runs on an infrastructure optimized

specifically for Redis performance. As a case in point, the platform uses containers to

help eliminate the performance bottlenecks of traditional para-virtualization. By increasing

transactions per second and enabling fast, consistent performance, developers can deliver

a better experience to their end users.

CONTAINER-BASED VIRTUALIZATION

ObjectRocket’s containerized approach isolates CPU, memory and I/O resources for

performance improvements. Traditional hardware virtualization — with virtualized memory,

processor and hard drives — is less than ideal for high I/O database workloads like Redis.

The overhead of running multiple operating systems, sometimes known as the “hypervisor

tax,” imposes penalties that especially impact database workloads. Additionally, some

hypervisors are known to degrade Redis performance in unique ways.

On the other hand, container-based virtualization provides close-to-native performance,

eliminating the need for virtualized hardware and multiple operating systems.

Hardware

Virtual Machine Virtual Machine

Guest OS Guest OS

Virtual Hardware

Hypervisor / Shared Host OS

Container Container

Shared Host OS

Hardware

Virtual Hardware

Traditional Hardware Virtualization vs. Container-Based Virtualization

ObjectRocket™ for Redis | Page 8

ENHANCED LOAD BALANCER

ObjectRocket for Redis includes a load balancer implementation that’s targeted specifically

for Redis. Based on the open source Redis HAProxy, the built-in load balancer runs on

the same performance level servers as ObjectRocket for Redis, resulting in improved

performance.

ObjectRocket also ensures that these load balancers are highly available, just like the Redis

containers. Load balancing is particularly important for applications in the cloud that

require high availability while growing and scaling for increased traffic.

IMPROVED STABILITY AND AVAILABILITY WITH GUARANTEED UPTIME

ObjectRocket for Redis was designed with data stability and accessibility in mind. The

architecture of ObjectRocket for Redis provides built-in redundancy of Redis instances with

high availability and automatic failover. This in combination with an industry-leading SLA

helps ensure that customers have access to their Redis instance and data. Redis has native

support for data persistence built in. ObjectRocket for Redis gives customers the capability

to manage this data persistence and assurance that their data is safe in the event of any

downtime or issues.

SMART PROVISIONING AND FULLY REDUNDANT INFRASTRUCTURE
FOR HIGH AVAILABILITY

From the very beginning of the instance being created, ObjectRocket for Redis creates a

master and slave pair of the same instance. With two instances, ObjectRocket for Redis

ensures high availability through primary and secondary servers. Instances are multiplexed

across multiple, physically separate hosts. In addition, ObjectRocket for Redis is built on

fully redundant infrastructure — from the network all the way up the stack — further

reducing the possibility of downtime.

AUTOMATIC REPLICATION AND FAILOVER

To help ensure stability and availability, ObjectRocket for Redis was designed for data

replication and failover. The replication functionality automatically copies the data of the

master instance to the slave instance in real time. Object Rocket for Redis ensures that the

instance pair (master and slave) stays synchronized. In the event of an issue, Redis Sentinels

are used to initiate a seamless failover process where the slave is promoted to the master.

Applications using the Redis server are automatically directed to the new address when

connecting.

ObjectRocket™ for Redis | Page 9

USER-CONTROLLABLE PERSISTENCE

Redis natively offers two methods to ensure permanent access to data for their instances.

RDB (Redis database) persistence performs point-in-time snapshots of a dataset at

specified intervals, provided enough changes occurred in the specified periods. AOF

(append-only files) persistence logs every write operation received by the server. This is

disabled by default but can be enabled by the user.

ObjectRocket for Redis supports both of these methods for data persistence and are

configurable based upon the customer’s needs. In both cases, the instance data is written

to disk for availability in the event both master and slave instances fail. When the Redis

instances come back up, the master is populated with the data from the latest write to

disk. The ObjectRocket support team can help customers with the appropriate persistence

settings to ensure that their Redis instances perform optimally.

FREE, AUTOMATED BACKUPS

To help guard against data loss, ObjectRocket offers free, daily backups on persistent Redis

instances. This backup capability can be used to:

•	 Augment existing backup schedules

•	 Cut backup costs or eliminate the cost completely

•	 Provide offsite backup for disaster or security breach recovery

Backups are performed every 24 hours. Restoring a database is as simple as contacting

ObjectRocket support for loading the backup to the instance.

INDUSTRY-LEADING SLAS

ObjectRocket is backed by one of the industry’s most comprehensive service level

agreements, ensuring that all instances hosted by Rackspace are available. ObjectRocket

for Redis guarantees that primary instances will be available 99.95% of the service year. If

Rackspace fails to meet this guarantee, service credits will be awarded as follows:

Monthly Availablitly % % of monthy bill credits

	99.0% – < 99.95% 5%

	95.00% – < 99.00% 25%

< 95% 50%

Service credits ensure developers are reimbursed
for any possibility of downtime

ObjectRocket™ for Redis | Page 10

BUILT-IN SECURITY

To help protect against security threats, the ObjectRocket platform offers a range of

security management through customized security tools such as dedicated firewalls and

intrusion detection.

Additionally, ObjectRocket maintains a secure-by-default approach by requiring

network ACL entries for every instance. ACLSync offers an automated solution for

synchronizing an environment’s IP addresses with ObjectRocket ACLs. By adding

and deleting ACLs on the fly as the environment changes, ACLSync saves developers

the trouble of manually managing ObjectRocket network access. Passwords are also

required for any client accessing an ObjectRocket for Redis instance.

EASY, POWERFUL SCALABILITY

For any digital presence, scalability is a crucial consideration.

With ObjectRocket for Redis, a scaling tool is available to

increase the size of the Redis instance(s) based on a customer’s

timeline and needs. Customers can easily go into the

ObjectRocket UI and with a few clicks, make the appropriate

change. All of the data migration from the old instance size to

the new instance size is completed in an efficient and seamless

fashion. Engineering experts are also on hand to help should

customers have any questions or need any assistance. With

appropriate scalability, developers With appropriate scalability,

developers can minimize costs while ensuring their end users

achieve the results they expect.

DATA AND APPLICATION PORTABILITY

The ObjectRocket platform is built on open standards and

includes integrations to ensure data and application portability.

Because ObjectRocket utilizes an open source, community edition of Redis, data is

portable, with no threat of database vendor lock-in.

Application workloads relying on ObjectRocket for Redis can be hosted on the

Rackspace Cloud or in AWS regions via AWS Direct Connect while minimizing network

lag. With ACLSync, ObjectRocket reduces latency by automatically synchronizing other

hosting environments’ IP addresses. And with EC2 integration, applications can run on

EC2 and connect to the Rackspace Cloud database via AWS Direct Connect.

“Scalability with ObjectRocket

means we actually hit our

milestones. They’ve grown

with us as fast as we can, and

they’ve made this process

seamless. So beforehand, we

were onboarding clusters day

in and day out. That’s all been

offboarded to Rackspace, and it’s

just invisible success.”

– Dane Atkinson
CEO, SumAll

ObjectRocket™ for Redis | Page 11

In addition, ObjectRocket for Redis can be integrated with other databases like

traditional relational databases or MongoDB. This allows developers to take advantage

of the lightning fast speeds of Redis while integrating with existing applications built on

other database technologies.

FLEXIBLE DEPLOYMENT OPTIONS

Characteristic of the ease and flexibility offered by ObjectRocket for Redis, the platform

provides multiple deployment options to suit developers’ internal IT and security needs.

With the latest version of RackConnect®, developers can now access ServiceNet and

public IP connections. Typically, ServiceNet IP addresses are inaccessible from the public

Internet and are local to each datacenter. With ObjectRocket for Redis, developers can

configure their account resources, such as cloud servers and ObjectRocket instances,

to utilize a ServiceNet IP address rather than a public IP address. And any traffic that

occurs between account resources on the Rackspace Network incurs no additional

bandwidth charges.

ObjectRocket™ for Redis | Page 12

4.	ObjectRocket vs. Unmanaged Hosting
Rackspace is the leader in managed cloud hosting, providing valuable benefits

throughout the lifecycle of a variety of cloud-based workloads — especially ones

with the performance, scalability and availability requirements of web applications

utilizing Redis. The following table outlines the differences between unmanaged

Redis hosting and Rackspace’s ObjectRocket for Redis:

Unmanaged ObjectRocket

Deployment
Options

Public cloud with generic commodity servers Multiple deployment options on
hardware optimized for Redis:

•	 Public cloud

•	 Private cloud

•	 Dedicated servers

•	 Hybrid cloud

Deployment
Process

Manual deployment:

•	 Manual installation

•	 Manual configuration of storage,
networking, security, monitoring and more

•	 Manual testing and optimization with a
tradeoff between rapid deployment and
future scalability

•	 3-click deployment

Performance

•		 Lower performance on generic commodity
servers not optimized for high I/O database
workloads

•	 Noisy neighbor problems on public cloud
create inconsistency

•	 Must invest in-house technical resources
to tune and optimize data structures,
architecture, etc.

Consistent database performance on
hardware configured and tuned specifically to
make Redis run as fast as possible

Scaling

Manual scaling:

•	 Customer handles unique challenges and
spikes

•	 Automated vertical scaling tool to increase
instance size in a few clicks

•	 Redis engineers on hand for scaling,
unique challenges, and spikes

Monitoring

Developers allocate resources to monitor such
things as performance and security

ObjectRocket’s Redis experts proactively
monitor the network, server, and Redis for
such things as connections, lag, status of
replicas, size and number of queries.

Availability

Manual high availability (HA). May feature:

•	 Pay for backups

•	 On your own for HA

•	 No SLAs

Automatic high availability and backups:

•	 Automatic HA

•	 Industry-leading SLAs

•	 Data persistence through RDB and AOF
files

•	 Free, daily backups

Support

Varies by provider, but may feature:

•		 Limited or nonexistent support

•	 Pay more for additional support and services

•	 Fanatical Support® 24x7x365

•	 Access to cloud engineers and Redis
expertise

ObjectRocket™ for Redis | Page 13

5.	Common Use Cases
ObjectRocket for Redis helps developers achieve maximum performance with a range of

use cases:

•	 Session stores and caching

•	 Full-page caching

•	 Queuing

•	 Metrics

•	 Leaderboards and counting

•	 Publish and subscribe

SESSION STORES AND CACHING

Session caching is one of the most common use cases for Redis. It ensures that applications

maintain user data such as session tokens and statistics. Since Redis offers persistence,

it’s often advantageous over other session stores such as Memcached. In addition to

persistence, some other cache backend implementations suffer from serious limitations like

inferior scalability and a lack of support for grouping of related cache entries.

The open source content management system Magento uses Redis for session caching. To

provide support for stable and scalable cache backend, the latest versions of Magento are

turning to Redis.

ObjectRocket for Redis is great for the session caching use case with its persistence support

and available Redis expertise. As simple as this use case is, it can get tricky quickly.

The ObjectRocket team has significant experience with session caching and is always

available to help customers with any issues that arise. High Availability also plays a very

big role in session caching. The last thing that a customer wants is to lose their cache

mid-session. ObjectRocket for Redis was architected specifically with high availability in

mind. This seamless failover capability assures that a customer’s cache won’t disappear in

the event of an issue.

ObjectRocket™ for Redis | Page 14

FULL-PAGE CACHING

Aside from basic session tokens, Redis provides an easy full-page caching platform. It

enables items such as CSS layout, auto-completion and top-read articles to load quickly

while reducing latency and network traffic. Research shows that users will abandon

a site and move to a competitor’s site if page load times are delayed by even one

second.* Both Magento and WordPress are now available with Redis full-page cache

plugins, offering a dramatic increase in page load times.

The way that ObjectRocket for Redis is optimized for performance really shines in this

use case. The entire ObjectRocket Redis HW and SW stack was designed specifically

for Redis performance and to not slow Redis down. This includes ensuring that the

network doesn’t get in the way to cause latency and thus slow down the performance.

Performance is key in full-page caching and ObjectRocket for Redis is a great tool in

this use case.

QUEUING

The Redis in-memory storage engine makes it an appealing platform for job, task

and messaging queuing. While many modern web applications try to do everything

all at once, queuing can help developers create a more responsive user experience by

prioritizing high-visibility jobs and delivering immediate feedback to the user. Related

jobs that the user is unlikely to notice can be queued for later execution.

Interacting with Redis as a queue feels native to those who use push/pop operations

with lists in programming languages such as Python. There are multiple open source

projects that make Redis a back-end utility for all queuing needs. Celery, for example,

has a back end that uses Redis as a broker.

While queuing sounds like a secondary use of Redis, it can make all the difference in

the world to a web application’s performance if used properly. The Redis expertise

available with ObjectRocket for Redis — along with how well it performs —

makes the platform a good fit for this use case. Our Redis experts can help make

recommendations on common approaches to queuing and help to ensure that

something that seems secondary doesn’t get in the way or become a blocker for the

application.

* https://econsultancy.com/blog/10936-site-speed-case-studies-tips-and-tools-for-improving-your-conversion-rate/

ObjectRocket™ for Redis | Page 15

METRICS

Measuring database performance and tracking analytics through various metrics is an

important consideration for any digital presence. Redis performs well in this capacity due

to its speed and flexibility in data structures. It can be used to track metrics such as web

traffic, log analysis and in-app usage.

Many customers have some very specific needs from a metrics perspective as it relates

to their applications. Redis itself can provide a very easy, flexible way to gather this data

in an efficient way without impacting application performance or requiring customers to

purchase additional off-the-shelf tools that may or may not fit their needs. If a customer

does decide to utilize an off-the-shelf product, the ObjectRocket Redis team is available to

help advise and integrate tools with their ObjectRocket for Redis instances.

LEADERBOARDS AND COUNTING

Redis is an appealing technology for websites and applications that involve leaderboards

and counting for functions such as ranked commenting system or video game

leaderboards. Sets and stored sets perform well in these operations.

The high availability, performance and data persistence of ObjectRocket for Redis make it

a good fit for the leaderboard/counting use case as well. Many times, a customer’s use of

the leaderboard capability of Redis is pivotal to their customer’s experience. Much like the

caching use case, the last thing that a customer wants is for their leaderboard to disappear

or for their leaderboard data to disappear. In the event of an issue, the ObjectRocket for

Redis capabilities are key to this use case’s success.

PUBLISH AND SUBSCRIBE

In the standard publish and subscribe messaging pattern, message publishers do not

program messages to be sent directly to specific subscribers. Instead, published messages

are characterized into classes, without consideration of subscribers. Similarly, subscribers

express interest in one or more classes and only receive messages that are in that class,

without consideration of publishers. The Pub/Sub feature of Redis proves useful for RSS and

activity feeds as well as social network connections and even chat systems.

The utilization of Redis in this use case can play a very big role in an application due to

its inherent performance. Customers have come to expect an instantaneous experience

when it comes to the consumption of information. One of the main goals in the design

of ObjectRocket for Redis is to stay out of the way and not slow Redis down. This helps

ensure that the flow of information in this use case meets customers’ expectations.

ObjectRocket™ for Redis | Page 16

6.	Conclusion
With its lightning fast in-memory engine, Redis helps deliver the application performance

that today’s users expect. But for optimal performance, managing and configuring Redis

must be done with expert precision.

ObjectRocket for Redis simplifies application development through pre-configuration,

performance optimization, reliability and scalability for Redis instances in the cloud. In the

end, ObjectRocket for Redis allows developers to focus on innovation and creativity —

rather than database architecture — to truly differentiate the business.

To learn more or chat with a specialist: 1-844-208-1147

or visit www.objectrocket.com/redis/

ObjectRocket™ for Redis | Page 17

About Rackspace
Rackspace (NYSE: RAX), the #1 managed cloud company, helps businesses tap the power of cloud
computing without the challenge and expense of managing complex IT infrastructure and application
platforms on their own. Rackspace engineers deliver specialized expertise on top of leading technologies
developed by OpenStack®, Microsoft®, VMware® and others, through a results-obsessed service known as
Fanatical Support®.

GLOBAL OFFICES
Headquarters Rackspace, Inc.
1 Fanatical Place | Windcrest, Texas 78218 | 1-800-961-2888 | Intl: +1 210 312 4700
www.rackspace.com

UK Office

Rackspace Ltd.
5 Millington Road
Hyde Park Hayes
Middlesex, UB3 4AZ
Phone: 0800-988-0100
Intl: +44 (0)20 8734 2600
www.rackspace.co.uk

Benelux Office

Rackspace Benelux B.V.
Teleportboulevard 110
1043 EJ Amsterdam
Phone: 00800 8899 00 33
Intl: +31 (0)20 753 32 01
www.rackspace.nl

Hong Kong Office

9/F, Cambridge House, Taikoo Place
979 King’s Road,
Quarry Bay, Hong Kong
Sales: +852 3752 6488
Support +852 3752 6464
www.rackspace.com.hk

Australia Office

Rackspace Hosting Australia PTY LTD
Level 1
37 Pitt Street
Sydney, NSW 2000
Australia

© 2015 Rackspace US, Inc. All rights reserved.

This white paper is for informational purposes only. The information contained in this document
represents the current view on the issues discussed as of the date of publication and is provided “AS IS.”
RACKSPACE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS DOCUMENT AND RESERVES THE RIGHT
TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT/SERVICES DESCRIPTION AT ANY TIME WITHOUT
NOTICE. USERS MUST TAKE FULL RESPONSIBILITY FOR APPLICATION OF ANY SERVICES AND/OR PROCESSES
MENTIONED HEREIN. EXCEPT AS SET FORTH IN RACKSPACE GENERAL TERMS AND CONDITIONS, CLOUD
TERMS OF SERVICE AND/OR OTHER AGREEMENT YOU SIGN WITH RACKSPACE, RACKSPACE ASSUMES
NO LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO ITS
SERVICES INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT.

Except as expressly provided in any written license agreement from Rackspace, the furnishing of this
document does not give you any license to patents, trademarks, copyrights, or other intellectual property.

Rackspace, Fanatical Support, and/or other Rackspace marks mentioned in this document are either
registered service marks or service marks of Rackspace US, Inc. in the United States and/or other countries.
OpenStack is either a registered trademark or trademark of OpenStack, LLC in the United States and/or
other countries. Third-party trademarks and tradenames appearing in this document are the property
of their respective owners. Such third-party trademarks have been printed in caps or initial caps and are
used for referential purposes only. We do not intend our use or display of other companies’ tradenames,
trademarks, or service marks to imply a relationship with, or endorsement or sponsorship of us by, these
other companies.

Modified: 08272015

http://www.rackspace.com
http://www.rackspace.co.uk
http://www.rackspace.nl
http://www.rackspace.com.hk

