
Connecting Relational Databases
to Elasticsearch
Use Elasticsearch to add visualization
and full text search to your SQL data

WHITE PAPER

1 © 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

Table of Contents

 Introduction 2

	 Coniguring	the	Datastores	and	JDBC	Driver		 4

	 Setting	up	Logstash	Input	 4

 Setting up the Elasticsearch Output 7

	 Coniguration	Wrap-up	 8

	 Modeling	the	Data	 	 	 9

	 The	Sample	Data	Set	 9

	 Methods	for	Modeling	the	Data	 9

	 	 Denormalizing	Your	Data	 10

	 	 Create	Arrays	or	Nested	Objects	for	Departments	and	Titles	 11

	 	 Use	Parent-Child	Relationships	 15

	 Query	Examples	 19

 How many employees there have been (all time): 21

 Kibana Examples 21

	 	 Top	10	Job	Titles	on	January	1,	1990	 21

	 	 Last	Names	of	People	in	the	Department	Development	 22

	 How	to	Refresh	the	Data	 22

	 	 Daily	Snapshots	 22

 Update as New Rows Appear 23

 How to Choose 23

	 Closing	and	Alternatives	 24

You can easily replicate data from a relational database like MySQL or PostgreSQL

into Elasticsearch to boost search capabilities or for data analytics purposes. Though

NoSQL and Big Data technologies pop up in the news more often with a lot more buzz,

relational databases are still alive and well. Almost every customer ObjectRocket

works with has some relational data as part of their app, and we occasionally get the

question of how best to move or replicate data from these databases. Elasticsearch

speeds up and improves search and provides data analytics and visualization when

combined with Kibana.

Introduction

There are a number of ways to connect these two technologies, from writing your own utilities in the language of your choice

to	of-the-shelf	open	source	tools.	In	particular,	the	Elastic	Stack	provides	a	number	of	options	in	and	of	itself.

Our Preferred Solution

Among	several	options,	we	prefer	Logstash	with	the	JDBC	input	plugin.	Here’s	why:

 � Logstash integrates seamlessly and with minimal manual intevention with Elasticsearch.

 � The	JDBC	input	plugin	only	requires	MySQL	client	access	to	work;	some	methods	of	replication	
require	binlogs,	which	aren’t	always	available	in	the	cloud.

 � Using	a	SQL	query	to	deine	what	to	sync	is	relatively	straightforward.

 � The	ilters	available	in	Logstash	are	extremely	powerful	and	can	help	latten	out	relational	data.

An example of the rough architecture using Logstash with the JDBC input plugin:

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

2

JDBC-compliant

Database

JDBC

Input Plugin

Logstash

Elasticsearch

Output

Elasticsearch

In	this	white	paper,	we’ll	walk	through	a	speciic	example.	However,	the	concepts	are	lexible	enough	that	you	can	apply	them	
with other technologies. For the rest of this whitepaper, we assume the following:

 � You	have	an	Elasticsearch	cluster	running	(example	uses	version	6.2.4).

 » If	you	don’t	already	have	an	Elasticsearch	cluster,	give	ObjectRocket a try.

 � You	have	a	JDBC	compatible	database	running	(example	uses	MySQL	5.7).

 » You’ll	want	some	data	in	your	database	and	a	user	that	can	access	the	database.	For	testing,	
we used the MySQL sample employee dataset.

 » You	can	use	pretty	much	any	database	that	has	a	JDBC	driver	available.

 � You	have	a	compatible	JDBC	driver	for	your	database	(example	uses	the	oicial	MySQL	driver).

 » Whether	you’re	using	PostgreSQL, MS SQL Server, Oracle,	or	others,	there	is	a	good	chance	you	can	ind	a	
supported	JDBC	driver.

 » Some	NoSQL	databases,	like	MongoDB,	even	have	commercial	JDBC	drivers	available	for	a	fee.

 » Oracle maintains a list	of	JDBC	compliant	vendors.

 � You	have	access	to	a	system	for	running	Logstash.	(Our	example	uses	Logstash	6.2.3.)

 » You	can	run	this	on	your	local	machine,	with	Docker,	on	a	cloud	server,	or	wherever	you	have	some	compute	available.

 » The	oicial	Logstash	guide	has	good setup instructions for this.

 » Ensure that both your Elasticsearch cluster and SQL database are reachable from wherever you run Logstash.

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

3

https://www.objectrocket.com/managed-elasticsearch/
https://dev.mysql.com/doc/employee/en/employees-introduction.html
https://dev.mysql.com/downloads/connector/j/
https://jdbc.postgresql.org/
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server?view=sql-server-2017
http://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html
http://www.oracle.com/technetwork/java/index-136695.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html

Coniguring the Datastores and JDBC Driver
The	coniguration	on	both	the	Elasticsearch	cluster	and	on	the	SQL	database	are	minimal.	

In	our	example,	we’re	running	Elasticsearch	on	the	ObjectRocket	service.	So,	we’ll	create	an	admin	user	and	whitelist	the	IP	for	the	
Logstash server in the ObjectRocket UI.

On	the	Elasticsearch	side,	it’s	as	simple	as	making	sure	that	you	have	appropriate	access	to	create	an	index	(or	indexes)	to	copy	
the	data.	You	can	create	an	index	template	if	you’d	like,	to	preset	index	settings	or	some	initial	mapping,	but	it’s	not	necessary	and	
you’ll	probably	want	to	iterate	later.	So,	for	this	example,	we’ll	just	let	Elasticsearch	auto-generate	an	index	for	the	irst	pass.

On	the	source	database	side,	the	setup	is	similar.	You	need	to	make	sure	you	have	a	user	that	can	access	the	database(s)	you’d	
like	to	replicate.	MySQL’s	JDBC	driver,	which	we’re	using,	places	almost	no	requirements	on	the	source	database	settings,	but	
PostgreSQL, for example,	requires	some	speciic	settings	to	ensure	JDBC	can	connect.	Therefore,	all	that	is	required	in	our	example	
is that we create a user and grant them access to select the data we want to replicate from the Logstash host.

The	JDBC	driver	itself	also	requires	minimal	install	and	coniguration.	In	the	case	of	the	MySQL	JDBC	driver,	setup	entails	
downloading	the	driver	and	extracting	the	appropriate	JAR	ile	to	a	directory	that	Logstash	can	get	to	and	ensuring	Logstash	has	
the	right	permissions	to	access	that	ile.	From	there,	you	either	need	to	set	the	CLASSPATH	to	include	the	directory	where	the	
driver	is,	or	you	can	just	point	to	it	directly	from	the	Logstash	coniguration		(which	we’ll	show	later).

Setting up Logstash Input
Now	we	just	need	to	tie	everything	together.	First,	let’s	start	by	setting	up	the	JDBC	input	plugin	and	outputting	to	a	local	ile	to	
test.	Here’s	the	initial	Logstash	coniguration	ile:

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

4

input {

jdbc {

jdbc_driver_library => “/opt/jdbc/mysql-connector-java-5.1.46-bin.jar”

jdbc_driver_class => “com.mysql.jdbc.Driver”

jdbc_connection_string => “jdbc:mysql://mysqlserveraddress:3306/employees”

jdbc_user => “mymysqluser”

jdbc_password => “notreallyapassword”

statement => “SELECT * FROM employees LIMIT 10”

lowercase_column_names => true

}

}

ilter {

#

}

output {

ile {

path => “/tmp/test.log”

ile_mode => 0644

codec => “json_lines”

}

}

https://jdbc.postgresql.org/documentation/head/prepare.html

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

5

{“gender”:”F”,”@timestamp”:”2018-04-05T16:15:11.503Z”,”irst_name”:”Duangkaew”,”last_name”:”Piveteau”,”emp_no”:10010,”@

version”:”1”,”birth_date”:”1963-06-01T00:00:00.000Z”,”hire_date”:”1989-08-24T00:00:00.000Z”}

{“gender”:”M”,”@timestamp”:”2018-04-05T16:15:11.474Z”,”irst_name”:”Georgi”,”last_name”:”Facello”,”emp_no”:10001,”@

version”:”1”,”birth_date”:”1953-09-02T00:00:00.000Z”,”hire_date”:”1986-06-26T00:00:00.000Z”}

{“gender”:”F”,”@timestamp”:”2018-04-05T16:15:11.476Z”,”irst_name”:”Bezalel”,”last_name”:”Simmel”,”emp_no”:10002,”@

version”:”1”,”birth_date”:”1964-06-02T00:00:00.000Z”,”hire_date”:”1985-11-21T00:00:00.000Z”}

{“gender”:”M”,”@timestamp”:”2018-04-05T16:15:11.477Z”,”irst_name”:”Parto”,”last_name”:”Bamford”,”emp_no”:10003,”@

version”:”1”,”birth_date”:”1959-12-03T00:00:00.000Z”,”hire_date”:”1986-08-28T00:00:00.000Z”}

{“gender”:”M”,”@timestamp”:”2018-04-05T16:15:11.483Z”,”irst_name”:”Chirstian”,”last_name”:”Koblick”,”emp_no”:10004,”@

version”:”1”,”birth_date”:”1954-05-01T00:00:00.000Z”,”hire_date”:”1986-12-01T00:00:00.000Z”}

{“gender”:”M”,”@timestamp”:”2018-04-05T16:15:11.484Z”,”irst_name”:”Kyoichi”,”last_name”:”Maliniak”,”emp_no”:10005,”@

version”:”1”,”birth_date”:”1955-01-21T00:00:00.000Z”,”hire_date”:”1989-09-12T00:00:00.000Z”}

{“gender”:”F”,”@timestamp”:”2018-04-05T16:15:11.490Z”,”irst_name”:”Anneke”,”last_name”:”Preusig”,”emp_no”:10006,”@

version”:”1”,”birth_date”:”1953-04-20T00:00:00.000Z”,”hire_date”:”1989-06-02T00:00:00.000Z”}

{“gender”:”F”,”@timestamp”:”2018-04-05T16:15:11.491Z”,”irst_name”:”Tzvetan”,”last_name”:”Zielinski”,”emp_no”:10007,”@

version”:”1”,”birth_date”:”1957-05-23T00:00:00.000Z”,”hire_date”:”1989-02-10T00:00:00.000Z”}

{“gender”:”M”,”@timestamp”:”2018-04-05T16:15:11.500Z”,”irst_name”:”Saniya”,”last_name”:”Kalloui”,”emp_no”:10008,”@

version”:”1”,”birth_date”:”1958-02-19T00:00:00.000Z”,”hire_date”:”1994-09-15T00:00:00.000Z”}

Everything in the example above should look pretty straightforward, but there are a couple of items to note:

 � Jdbc_driver_library:	This	is	just	the	name	of	the	JDBC	driver	ile.	You	can	set	up	the	Java	CLASSPATH	variable	to	include	the	location	
of	that	ile,	or	you	can	just	use	the	full	path	to	the	jar	here.	In	the	example,	we	dropped	ours	in	a	directory	we	created	called	/opt/jdbc.

 � Jdbc_driver_class:	This	is	just	the	driver	class	name	for	the	driver	you’re	using.	Consult	the	documentation	for	your	driver.

 � Jdbc_connection_string: The jdbc:mysql:// will	depend	on	exactly	which	type	of	database	you’re	using,	but	for	MySQL,	it	should	
look like jdbc:mysql://hostnameorIP:port/database.

 � Statement:	This	is	just	a	standard	SQL	statement	to	grab	whatever	data	you	want	from	your	source.	We	kept	it	simple	for	the	
irst	test	and	grabbed	all	columns	and	10	rows	from	the	employees	table.

 � File output plugin:	The	ile	output	plugin	places	the	output	in	a	ile	speciied	by	the	path	setting.	(The	example	is	named	“test.
log”	in	the	/tmp	directory.)	Just	make	sure	Logstash	has	the	ability	to	write	to	that	ile	and/or	create	the	ile	if	it	doesn’t	exist	in	
that directory.

Since	we	installed	Logstash	from	the	deb	package,	we	just	needed	to	drop	the	coniguration	above	in	a	ile	named	something.conf
in /etc/logstash/conf.d/.	The	default	behavior	of	Logstash	6.x	when	installed	from	the	deb	package	is	to	create	a	pipelines.yml	ile	
in /etc/logstash,	which	then	instructs	Logstash	to	load	any	.conf	iles	from	/etc/logstash/conf.d. However, you may need to load

diferently	depending	on	how	you	installed	Logstash.	Consult	the	documentation for your version.

Let’s do a test run:

Since	I	used	the	debian	package	on	an	Ubuntu	16.04	system,	systemd was used to start and stop Logstash. To run Logstash,

I’d	use	sudo systemctl start logstash.service, tail the logs in /var/log/logstash to watch status, then stop Logstash with sudo
systemctl stop logstash.service. This is the general process used to start and stop Logstash in these examples, but consult the

Logstash	docs	for	more	detail	on	how	to	run	Logstash	if	you	have	a	diferent	environment.

Now	we	check	our	output	ile, /tmp/test.log,	from	the	example	coniguration	above:

https://www.elastic.co/guide/en/logstash/current/config-setting-files.html

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

6

This	looks	good.	We	now	have	consistent	json-iied	row	data.	The	ield	names	look	reasonable,	and	we	don’t	have	any	diicult	mapping	
issues,	as	Elasticsearch	should	be	able	to	identify	all	of	those	data	ields	automatically.

However, if that didn’t work, here’s how to troubleshoot:

 � Check	the	Logstash	output	or	logs	for	any	errors.	In	our	example,	these	iles	are	placed	in	/var/log/logstash. Consult your Logstash

docs	to	be	sure	to	ind	where	they	are	stored	for	your	use.	l

 � Conirm	you	can	log	into	mysql	and	perform	the	jdbc	statement/query	from	wherever	you’re	running	Logstash	using	the	credentials	
speciied	in	the	JDBC	input	section	of	the	Logstash	coniguration.

 � Make	sure	whatever	user	is	running	Logstash	has	the	correct	permissions	to	access	the	JDBC	driver	jar—whether	loaded	from	the	
full path, as in the example above, or via the CLASSPATH.

 � Conirm	the	path	provided	for	the	jar	ile	and/or	make	sure	the	CLASSPATH	is	set	correctly	for	the	user	that’s	actually	running	
Logstash (if not you).

 � Conirm	that	the	user	running	Logstash	has	access	to	and	the	right	permissions	for	wherever	you	want	to	place	the	test.log

output	ile.

https://www.elastic.co/guide/en/logstash/current/logging.htm
https://www.elastic.co/guide/en/logstash/current/logging.htm
https://www.elastic.co/guide/en/logstash/current/logging.html

Setting up the Elasticsearch Output
Now	that	we	know	the	input	side	of	our	ilter	is	working	correctly,	we	need	to	conigure	the	Elasticsearch	end.	See	the	coniguration	ile	
for the full setup below.

Everything here is, once again, pretty straightforward:

 � Host(s):	This	is	a	host	or	list	of	elasticsearch	hosts.	If	you’re	using	ObjectRocket	for	Elasticsearch,	you	can	just	cut	and	paste	this	
block	from	the	connection	snippets	section	of	the	Instance	Details	screen.

 � User/password:	In	the	JDBC	block,	these	are	your	source	database	credentials.	In	the	Elasticsearch	block,	these	are	your	
Elasticsearch username and password.

 � Index:	If	you	don’t	want	to	use	the	default	of	logstash-%{+YYYY.MM.dd}, you can specify an index name here.

 � Document_id:	In	order	to	make	employees	updateable	(and	some	other	actions	we’ll	describe	later),	use	the	
emp_no	(employee	number)	ield	as	the	Elasticsearch	document	ID.

input {

jdbc {

jdbc_driver_library => “/opt/jdbc/mysql-connector-java-5.1.46-bin.jar”

jdbc_driver_class => “com.mysql.jdbc.Driver”

jdbc_connection_string => “jdbc:mysql://mysqlserveraddress:3306/employees”

jdbc_user => “mymysqluser”

jdbc_password => “notreallyapassword”

statement => “SELECT * FROM employees LIMIT 10”

lowercase_column_names => true

}

}

The ilter part of this ile is commented out to indicate that it is

optional.

ilter {

#

}

output {

elasticsearch {

id => “esoutput”

document_id => “%{emp_no}”

hosts => [“some-es-host”, “another-es-host”]

user => “myelasticsearchuser”

password => “myelasticsearchpassword”

ssl => “true”

index => “mysqlemployees”

}

}

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

7

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

8

Now	it’s	time	to	rerun	Logstash	and	see	what	shows	up	in	
Elasticsearch. If everything worked, you should see your 10

docs from the test above replicated in Elasticsearch. From the

query	below,	you	can	see	that	we	have	10	documents	in	the	
index and a sample document.

GET /mysqlemployees/_search?size=1

If it didn’t work correctly, check your logstash logs and

logstash.conf. Also:

 � Conirm	you	can	curl	the	Elasticsearch	hosts	you	speciied	
in	the	conig	and	get	a	response	with	the	user	and	
password provided.

 � Make sure the user has the right permissions to index

documents and create new indexes.

Coniguration Wrap-up
At this point, you should have a repeatable setup for grabbing

data	from	your	JDBC	connection	to	your	RDMS	(i.e.	MySQL,	
PostgreSQL, Oracle) and syncing it with Elasticsearch. Now you

can	start	playing	with	your	SQL	query	and	narrowing	it	down	
to the data you actually want. However, there still may be a

number	of	questions.	How	do	you	represent	multiple	relational	
database tables in Elasticsearch? How do you keep track of

updates?

Modeling the Data
There	are	a	number	of	diferent	ways	to	model	your	relational	data	in	Elasticsearch.	We’ll	give	you	a	few	examples	below	so	you	can	
decide what is right for your application.

The Sample Data Set
Let’s	dig	into	our	sample	data	set	to	set	the	stage	for	how	we’ll	model	the	data.	We	used	the	Employees sample database provided

in the MySQL docs, which provides employee records, with title, salary, and department information in additional tables. See the

schema below.

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

9

As you can see, the employees table contains the main employee records, while the dept_emp, dept_manager, and titles tables add

additional information about where each employee worked and on which dates.

The	big	question	is	how	to	represent	those	relations	within	Elasticsearch.	Since	Elasticsearch	can’t	really	join	at	query	time,	how	can	we	
make	sure	we’re	able	to	grab	all	relevant	data	about	an	employee	with	a	simple	query?	There	are	a	few	options.

Methods for Modeling the Data
To	keep	the	queries	from	getting	too	excessive,	we	won’t	worry	about	salaries	and	managers	for	now.	For	the	purposes	of	this	example,	
we’ll	just	focus	on	employees,	the	roles/titles	they’ve	had,	and	the	departments	they’ve	been	in.	This	requires	joining	four	diferent	tables	
on the relational side.

https://dev.mysql.com/doc/employee/en/

Denormalizing Your Data

An	easy	solution	is	to	just	join	everything	on	the	SQL	side	and	replicate.	You	can	essentially	create	an	Elasticsearch	document	for	every	
combination of employee, title, and department they were in.

Here’s what the logstash conig looks like in this case:

input {

jdbc {

jdbc_driver_library => “/opt/jdbc/mysql-connector-java-5.1.46-bin.jar”

jdbc_driver_class => “com.mysql.jdbc.Driver”

jdbc_connection_string => “jdbc:mysql://mySQLhostname:3306/database”

jdbc_paging_enabled => true

jdbc_user => “mysqluser”

jdbc_password => “mysqlpassword”

statement => “SELECT e.emp_no as ‘employee_number’, birth_date, irst_name, last_name, gender, hire_date, t.title AS

‘title.name’, t.from_date AS ‘title.from_date’, t.to_date AS ‘title. to_date’, d.dept_no AS ‘department.number’,

ds.dept_name AS ‘department.name’, d.from_date AS ‘department.from_date’, d.to_date AS ‘department.to_date’ FROM

employees e LEFT JOIN (titles t, dept_emp d, departments ds) ON (e.emp_no = t.emp_no AND e.emp_no = d.emp_no AND

d.dept_no = ds.dept_no AND t.from_date < d.to_date AND t.to_date > d.from_date)”

lowercase_column_names => true

}

}

output {

elasticsearch {

id => “esoutput”

document_id => “%{employee_number}_%{department.number}_%{title.name}_%{title.from_date}”

hosts => [“eshostone”, “eshosttwo”]

user => “esuser”

password => “espassword”

ssl => “true”

index => “mysqlempdenorm”

}

}

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

10

The	two	key	changes	are	the	SQL	query,	which	is	now	a	large	set	of	joins,	and	the	document_id	on	the	Elasticsearch	side.	The	SQL	query	
is	pretty	standard,	but	the	real	key	is	that	we’re	looking	for	every	title	an	employee	had	in	the	company	and	then	making	sure	we’re	
joining only the department(s) they were in while holding that title.

In the case of the document_id, now there can be multiple documents for each employee number since each employee could potentially

have	had	multiple	titles/roles	within	the	company.	Therefore,	we	created	an	ID	that	takes	into	account	department,	title,	and	start	date.	
The start date was a later add, just to be extra sure that if an employee left a role, then later went back to that same role in that same

Here’s a resulting Elasticsearch doc:

{

“_index”: “mysqlempdenorm”,

“_type”: “doc”,

“_id”: “10007_d008_Staff_1989-02-10T00:00:00.000Z”,

“_score”: 1.0,

“_source”:

{

“department.from_date”: “1989-02-10T00:00:00.000Z”,

“birth_date”: “1957-05-23T00:00:00.000Z”,

“@timestamp”: “2018-04-10T19:31:38.773Z”,

“title.name”: “Staff”,

“gender”: “F”,

“hire_date”: “1989-02-10T00:00:00.000Z”,

“department.number”: “d008”,

“department.name”: “Research”,

“department.to_date”: “9999-01-01T00:00:00.000Z”,

“title.to_date”: “1996-02-11T00:00:00.000Z”,

“employee_number”: 10007,

“irst_name”: “Tzvetan”,

“last_name”: “Zielinski”,

“title.from_date”: “1989-02-10T00:00:00.000Z”,

“@version”: “1”

}

}

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

11

Pros

• It’s	pretty	easy	to	identify	a	
speciic	employee	and	their	role	
at any point in time.

• You	get	great	Kibana	support,	
since	you’re	not	using	some	of	
the Elasticsearch joins (nested

types,	parent/child)	that	aren’t	
well supported in Kibana.

Cons

• Potentially larger space

usage, since you have every

combination of every table. This

could be a problem for larger

data sets.

• It’s	a	pretty	expensive	query	on	
the SQL side and could cause

some performance issues.

• Queries that rely on distinct

employee counts can be trickier

(see below).

department,	we	won’t	miss	it.	None	of	this	is	required,	though.	You	can	simply	let	Elasticsearch	pick	an	ID	for	you.	We	did	it	this	way	so	that	
if	we	ever	wanted	to	update	or	overwrite	employees,	we	could	base	the	ID	on	this	identifying	information.

One	other	note	is	that	we’ve	enabled	paging	with	the jdbc_paging_enabled setting. As the dataset starts to get larger, you may need to

break	up	the	output	from	the	relational	database	to	manage	the	load.	However,	this	could	cause	some	issues	because	overlap/reloading	
parts	of	the	data	is	possible.	What	we	did	with	the	ID	above	makes	sure	we	don’t	create	duplicates.

Create Arrays or Nested Objects for
Departments and Titles

Another option is to just aggregate the titles and departments

into	arrays/nested	objects	within	the	employee	docs.	This	
still	requires	some	joining	on	the	SQL	side,	but	also	uses	the	
“aggregate”	ilter	within	Logstash	to	combine	things	like	the	
titles	and	departments.	What	we’ll	end	up	with	is	a	document	
per employee with arrays for the roles and departments

they’ve	been	in.	Let’s	look	at	how	this	looks	in	our	Logstash	
conig	(example	only	shows	the	ields	that	have	changed).

Note 1: The Logstash docs call it out, but know that when

using	the	”aggregate”	ilter	the	way	we	do	in	the	example,	it’s	
important to set the number of pipeline workers in Logstash

to	1.	The	ilter	below	requires	that	all	docs	with	the	same	
employee_number are next to each other, which is not

guaranteed	if	you	use	multiple	worker	threads.	You	should	also	
turn	of	jdbc_paging_enabled, which can also cause issues with

this	ilter.

Note 2: You	can	also	do	some	of	this	aggregating	on	the	
relational side. MySQL, for example, has some functions in

5.7.22	and	later	that	will	allow	you	to	combine	multiple	rows	
into	a	JSON	array.

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

12

input {

jdbc {

statement => “SELECT e.emp_no as ‘employee_number’, birth_date, irst_name, last_name, gender, hire_date, t.title

AS ‘title.name’, t.from_date AS ‘title.from_date’, t.to_date AS ‘title.to_date’, d.dept_no AS ‘department.

number’, ds.dept_name AS ‘department.name’, d.from_date AS ‘department.from_date’, d.to_date AS ‘department.

to_date’ FROM employees e LEFT JOIN (titles t, dept_emp d, departments ds) ON (e.emp_no = t.emp_no AND e.emp_no

= d.emp_no AND d.dept_no = ds.dept_no AND t.from_date < d.to_date AND t.to_date > d.from_date) ORDER BY e.emp_no

ASC”

}

}

ilter {

aggregate {

task_id => “%{employee_number}”

code => “

map[‘employee_number’] = event.get(‘employee_number’)

map[‘birth_date’] = event.get(‘birth_date’)

map[‘irst_name’] = event.get(‘irst_name’)

map[‘last_name’] = event.get(‘last_name’)

map[‘gender’] = event.get(‘gender’)

map[‘hire_date’] = event.get(‘hire_date’)

map[‘roles’] ||= []

map[‘roles’] << {‘title.name’ => event.get(‘title.name’),’title.from_date’ => event.get(‘title.from_

date’),’title.to_date’ => event.get(‘title.to_date’),’department.number’ => event.get(‘department.

number’),’department.name’ => event.get(‘department.name’),’department.from_date’ => event.get(‘department.

from_date’),’department.to_date’ => event.get(‘department.to_date’)}

event.cancel()

“

push_previous_map_as_event => true

timeout => 30

}

}

output {

elasticsearch {

document_id => “%{employee_number}”

index => “mysqlempnested”

}

}

The	SQL	query	is	almost	exactly	the	same	as	before,	but	the	big	diference	is	that	we’re	now	speciically	ordering	by	employee_number.

This	is	extremely	important	for	the	aggregate	ilter	mentioned	below	because	it	depends	on	documents	with	the	same	employee_
number being next to each other.

The	aggregate	ilter	that	we	use	will	create	a	temporary	map	that	appends	each	diferent	title/department	that	comes	through	to	an	
array.	When	it	sees	a	document	with	a	diferent	task_id/employee number, it will push the map and its array of roles as a new event

(push_previous_map_as_event => true). This is very similar to an example in the Logstash documentation.

Outside	the	Logstash	conig,	you	also	have	a	choice	of	whether	you	want	to	put	the	roles	into	a	nested	ield	or	not.	If	you	go	the	nested	
route,	queries	about	titles	and	departments	should	be	more	accurate,	but	the	downside	is	that	queries	will	need	to	change	a	bit,	and	
Kibana	support	for	nested	ields	is	not	great.	

To make these items a nested ield, you will need to specify that in the template or mapping before you load the data:

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

13

PUT /mysqlempnested

{

“mappings”: {

“doc”: {

“properties”: {

“roles”: {

“type”: “nested”

}

}

}

}

}

https://www.elastic.co/guide/en/logstash/6.2/plugins-filters-aggregate.html#plugins-filters-aggregate-example4

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

14

{

“_index”: “mysqlempnested”,

“_type”: “doc”,

“_id”: “10007”,

“_score”: 1.0,

“_source”:

{

“last_name”: “Zielinski”,

“employee_number”: 10007,

“irst_name”: “Tzvetan”,

“hire_date”: “1989-02-10T00:00:00.000Z”,

“@timestamp”: “2018-04-12T17:34:53.300Z”,

“gender”: “F”,

“@version”: “1”,

“birth_date”: “1957-05-23T00:00:00.000Z”,

“roles”: [

{

“title.from_date”: “1996-02-11T00:00:00.000Z”,

“department.to_date”: “9999-01-01T00:00:00.000Z”,

“title.name”: “Senior Staff”,

“department.from_date”: “1989-02-10T00:00:00.000Z”,

“title.to_date”: “9999-01-01T00:00:00.000Z”,

“department.name”: “Research”,

“department.number”: “d008”

},

{

“title.from_date”: “1989-02-10T00:00:00.000Z”,

“department.to_date”: “9999-01-01T00:00:00.000Z”,

“title.name”: “Staff”,

“department.from_date”: “1989-02-10T00:00:00.000Z”,

“title.to_date”: “1996-02-11T00:00:00.000Z”,

“department.name”: “Research”,

“department.number”: “d008”

}

]

}

}

Here’s a resulting Elasticsearch doc:

Use Parent-Child Relationships

Yet	another	option	is	to	use	the	parent/child	facilities	
in	Elasticsearch.	This	requires	a	little	more	complicated	
Logstash	coniguration,	since	you’ll	need	one	query	for	
the	parents	and	one	for	the	children.	Logstash	6.x	makes	
this easy, because it includes the ability to create multiple

pipelines,	so	you	can	just	create	a	coniguration	ile	for	each	
type. This is still possible in earlier versions of Logstash,

but	you’ll	have	to	use	multiple	input	plugins	with	diferent	
queries	and	then	use	a	conditional	on	the	output	plugin	to	
determine	whether	you’re	loading	a	parent	or	child	doc.	
The example will show the latter, since it will work in

most versions of Logstash.

One	other	note	is	that	parent/child	has	changed	signiicantly	
in	Elasticsearch	6.x	because	there	are	no	longer	multiple	
mapping types per index. It also seems like the support for

parent/child	in	Logstash	6.x	is	not	quite	straightforward	
when	connecting	to	an	Elasticsearch	6.x	cluster.	The	pipeline	
on	page	16	gets	it	working.

The	irst	order	of	business	is	to	set	up	the	mapping	with	the	
new	“join”	ield	type	to	facilitate	the	parent/child	mapping.	
Due	to	the	changes	in	Elasticsearch	6.x,	you’ll	need	to	create	
a	ield	of	a	new	“join”	type	(named	“doctype”	on	the	left)	and	
specify the relationships between the various values for that

ield	(in	the	“relations”	sub-ield).	In	our	case,	our	parents	will	
set	the	“doctype”	to	“employee”	and	the	children	will	set	
it	to	“role.”

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

15

Pros

• A single doc per employee is

easier to manage and may work

better with some aggregations.

Cons

• It’s	still	a	pretty	expensive	query	
on the SQL side and could cause

some performance issues.

• If you go the nested route, there

may	be	some	diiculties	in	
Kibana,	since	nested	ields	are	
not supported.

PUT /mysqlempparentchild

{

“mappings”: {

“doc”: {

“properties”: {

“doctype”: {

“type”: “join”,

“relations”: {

“employee”: “role”

}

}

}

}

}

}

Elasticsearch parent-child index mapping:

Logstash conig

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

16

input {

jdbc {

statement => “SELECT emp_no as ‘employee_number’, birth_date, irst_name, last_name, gender, hire_date FROM employees
e ORDER BY employee_number ASC”

add_ield => { “doctype” => “employee” }

}

jdbc {

statement => “SELECT t.emp_no as ‘employee_number’, t.title AS ‘title.name’, t.from_date AS ‘title.from_date’,

t.to_date AS ‘title.to_date’, d.dept_no AS ‘department.number’, ds.dept_name AS ‘department.name’, d.from_date AS

‘department.from_date’, d.to_date AS ‘department.to_date’ FROM titles t LEFT JOIN (dept_emp d, departments ds) ON

(t.emp_no = d.emp_no AND d.dept_no = ds.dept_no AND (t.from_date BETWEEN d.from_date AND d.to_date OR d.from_date

BETWEEN t.from_date AND t.to_date)) ORDER BY employee_number ASC”

}

}

ilter {

if [doctype] != “employee” {

mutate {

add_ield => {

“[doctype][name]” => “role”

“[doctype][parent]” => “%{employee_number}”

}

}

}

}

output {

if [doctype] == “employee” {

elasticsearch {

id => “esparentoutput”

document_id => “%{employee_number}”

index => “mysqlempparentchild”

}

} else {

elasticsearch {

id => “eschildoutput”

document_id => “%{employee_number}_%{department.number}_%{title.name}_%{title.from_date}”

index => “mysqlempparentchild”

routing => “%{employee_number}”

}

}

}

A summary of the key changes from the previous page:

 � You	now	have	two	input	blocks—one	that	queries	the	parent	
docs	and	one	that	queries	the	child	docs.	The	one	for	the	
parent docs sets the doctype, so we can identify them as

parents downstream and so we can avoid the need for another

mutate	statement	later	to	add	that	ield.

 � We	added	a	mutate	ilter	that	adds	ields	to	the	child	docs	so	
that Elasticsearch can identify them as child documents and

what the parent doc is.

 � There are now two output blocks, since the document_ids will

need	to	be	diferent	between	children	and	parents,	with	an	
explicit routing statement for the children.

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

17

Pros

• A single doc per employee is

easier to manage and may work

better with some aggregations.

• For data sets that have a lot

of children per parent, you

can save some space since

you’re	not	having	to	replicate	
the parent information in

every doc.

• You	can	add	children	or	
update parents incrementally

without having to reset the

entire document.

Cons

• Parent-child	requires	you	to	use	
special/speciic	queries,	and	the	
support in Kibana is not there.

At	this	point,	let’s	look	at	the	parent-child	mechanics	in	Elasticsearch	6.x	a	bit,	since	they’re	new.	The	“join”	ield	can	operate	slightly	
diferently	depending	on	whether	you’re	sending	a	parent	or	child	document.	For	parents,	it’s	just	as	easy	as	setting	the	join	ield	to	the	
parent	type.	(We	do	this	by	setting	“doctype”	to	“employee”	in	the	input	block.)	

For	children,	you	set	this	ield	a	little	diferently.	You	need	to	set	a	“name”	sub-ield	to	the	type	of	document	(“role”	in	our	case),	and	then	
set	a	“parent”	subield	to	the	id	of	the	parent	doc	(“${employee_number}” in our case). Finally, the child documents need to have their

routing	set	to	the	parent	ID	(unless	you’re	using	something	else	to	route	your	parent	docs)	to	ensure	they	end	up	on	the	same	shard.

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

18

{

“_index”: “mysqlempparentchild”,

“_type”: “doc”,

“_id”: “10007”,

“_score”: 1.0,

“_source”: {

“@version”: “1”,

“employee_number”: 10007,

“irst_name”: “Tzvetan”,

“birth_date”: “1957-05-23T00:00:00.000Z”,

“gender”: “F”,

“last_name”: “Zielinski”,

“@timestamp”: “2018-04-14T04:06:31.926Z”,

“hire_date”: “1989-02-10T00:00:00.000Z”,

“doctype”: “employee”

}

},

{

“_index”: “mysqlempparentchild”,

“_type”: “doc”,

“_id”: “7qlVwmIBNwBnVopfTOPz”,

“_score”: 1.0,

“_routing”: “10007”,

“_source”: {

“title.name”: “Senior Staff”,

“department.to_date”: “9999-01-01T00:00:00.000Z”,

“@version”: “1”,

“department.name”: “Research”,

“title.to_date”: “9999-01-01T00:00:00.000Z”,

“@timestamp”: “2018-04-14T04:06:32.170Z”,

“department.number”: “d008”,

“employee_number”: 10007,

“title.from_date”: “1996-02-11T00:00:00.000Z”,

“doctype”: {

“parent”: “10007”,

“name”: “role”

},

“department.from_date”: “1989-02-10T00:00:00.000Z”

}

}

Now	we	have	parent/child	mapped	Elasticsearch	documents:

Query Examples
Since	the	data	will	be	modeled	a	little	diferently,	let’s	look	at	a	couple	of	queries	to	see	the	diferences.

Show me employees that are there currently:

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

19

As	you	can	see,	the	query	is	VERY	similar,	with	the	only	real	diference	being	the	need	for	a	“nested”	query	in	the	nested	case	and	a	
“has_child”	query	in	the	parent-child	case.

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

20

All	three	queries	return	240,124	hits.	The	only	diference	is	how	they’re	displayed.	Here’s	an	example	for	each:

The	big	diference	here	is	the	way	the	roles	are	displayed.	The	denormalized	data	is	giving	us	exactly	the	role	and	employee	
data	we	want	in	a	single	document.	The	nested	query	will	return	the	entire	document,	which	will	include	all	roles,	so	further	
iltering	is	required.	The	parent-child	query	will	simply	return	the	parent	employee	record.	However,	you	can	also	provide	just	
the matching role by using the inner_hits	option	in	the	query.

How many employees there have been (all time):

Though	a	pretty	simple	request,	this	one	can	get	a	little	tricky	on	the	denormalized	data.

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

21

We’ll	start	with	nested	and	parent-child	irst,	because	those	are	the	easiest.	Since	nested	has	just	stored	all	of	the	titles/roles	in	an	array,	
you	can	just	do	a	search	and	see	how	many	hits	you	get.	Since	each	employee	has	a	doc,	it	will	give	you	an	accurate	count.	Parent-child	
is	similarly	easy.	You	just	have	to	look	for	all	documents	that	have	the	employee	doctype,	and	the	number	of	hits	is	your	answer.

The	denormalized	data	gets	a	bit	trickier.	Since	each	employee	can	show	up	in	multiple	documents,	if	they’ve	had	multiple	roles,	there’s	
no	easy	way	to	pick	out	unique	or	distinct	employee	IDs.	There	are	a	few	easy	approximations,	like	using	the	cardinality	aggregation,	
but	it	bears	mentioning	that	cardinality	is	not	guaranteed	to	be	accurate	for	high	cardinality	ields.	You	can	crank	up	the	precision	
to	the	max,	but	it’s	still	an	approximation.	There	are	deinitely	more	computationally	expensive	ways	to	get	the	answer,	either	with	
some	scripting	on	the	Elasticsearch	side	or	via	some	client-side	massaging,	but	the	point	is	that	once	the	data	is	denormalized,	it	can	
sometimes be hard to extract out data like this.

Kibana Examples
Here	are	a	few	examples	that	show	the	difering	levels	of	Kibana	support.

Top 10 Job Titles on January 1, 1990

First,	we’ll	look	at	a	breakdown	of	the	top	10	employee	titles.

We	got	the	results	we	need	from	both	denormalized	and	parent-child,	but	nested	returned	nothing.	The	reason	nested	failed	is	that	you	
need	to	use	a	nested	query	to	be	able	to	return	ields	that	are	nested.	Parent-child,	on	the	other	hand,	was	able	to	return	documents	
because	the	child	documents	are	actual	queryable	documents

However,	if	we	need	to	see	visualizations	on	both	employee	and	title	data,	the	story	changes.

Last Names of People in the Department Development

If	we	then	try	to	visualize	the	last	names	of	people	in	the	department	development,	the	results	look	like	this:

ObjectRocket: MySQL to Elasticsearch

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

22

Now	you	can	see	that	only	the	denormalized	data	can	display	what	you’re	looking	for.	The	nested	case	fails	for	the	same	reason	as	
above.	Role	data	is	hidden	unless	you’re	using	the	nested	query.	Parent-child	fails	this	time	because	you	can	easily	query	and	aggregate	
on	parent	and	child	documents	separately,	but	the	only	way	to	link	them	is	with	a	parent-child	query,	which	Kibana	does	not	support.

Essentially,	Kibana	is	a	mixed	bag	when	it	comes	to	visualizing	the	diferent	ways	of	mapping	the	data.

How to Refresh the Data
Another major aspect of how to model this data is how and how often to load new data. The preceding sections focus on dumping

the entire contents of the source database as one large import. However, for some data you may want to only add updated data as it

changes.	Here’s	a	brief	review	of	some	options	for	how	to	handle	updates.

Daily Snapshots

The	easiest	solution	is	to	just	take	a	snapshot	on	a	periodic	basis	(i.e.	hourly,	daily)	of	the	full	dataset,	or	the	part	of	the	data	set	you’re	
interested	in.	In	this	case,	you	just	set	your	queries	like	we	did	above	and	then	use	the	schedule	ield	in	the	JDBC	plugin	to	set	how	often	
that	query	runs.	

Also,	in	the	examples	above,	we	use	a	static	index	name,	which	basically	means	we’ll	always	overwrite	our	data	as	we	update	it	and	only	
keep	a	single	index	for	our	MySQL	data,	which	will	not	account	for	deleted	rows	unless	we	clear	out	the	old	index	irst.	

An	alternative	method	is	to	use	a	dynamic	index	name	by	including	something	unique	like	a	date	in	the	index	name,	so	that	each	time	
the pipeline runs (or on some schedule) it drops the results in a new index. This can be helpful if you want regular full snapshots of the

data and want to watch how the overall data set changes.

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html#_scheduling_2

ObjectRocket: MySQL to Elasticsearch

Update as New Rows Appear

The	other	main	option	is	to	track	where	you	left	of	last	time	you	ran	a	query	and	just	update	incrementally	from	that	point.	Logstash	
includes	a	number	of	settings	and	special	ields	to	help	you	manage	this,	like	the	sql_last_value	ield,	tracking_column setting, and

use_column_value	setting.	The	idea	is	that	you	can	track,	for	example,	the	last	ID	you	transferred	to	Elasticsearch,	then	only	add	new	
records as they come in. There are a few resources online that document this route fairly well.

This	can	be	helpful,	can	create	a	smaller	data	footprint,	and	can	minimize	the	amount	of	data	transferred	between	the	databases,	but	
there	are	some	downsides.	First	of	all,	you	need	a	good	column	to	track	that	always	moves	in	a	consistent	direction	(like	a	“last	updated”	
timestamp).	Second,	this	doesn’t	really	handle	deletes	on	the	source	very	well,	so	it	won’t	create	a	perfect	picture	of	your	relational	data.

For	example,	in	the	data	set	above,	you	can	set	your	SQL	queries	to	only	return	documents	that	have	a	hire_date greater than the last

time Logstash ran. This will grab all new employees but will miss any deleted employees, employees that have some other attribute

changed,	and	employees	that	just	changed	roles.	You	can	work	around	some	of	these	limitations,	but	it	can	get	complicated.	It	really	

depends on what data is available in MySQL, whether it allows you to identify changes, and exactly when the changes occurred.

How to Choose
So how do you choose? It depends on your data. It boils down to a number of factors, like what kind of data you have, what the schema

looks	like,	how	much	data	you	have,	and	how	you	want	to	use	that	data.	It’s	no	surprise	that	everyone’s	situation	will	be	diferent,	but	
here	are	some	guidelines	based	on	two	of	the	largest	factors:	data	size	and	use	case.

The general logic here is that small data sets are inexpensive to process and store, so regular full snapshots are the absolute easiest way

to load up the data.

When	it	comes	to	visualization	or	analytics,	the	ability	to	see	all	of	your	data	correctly	in	Kibana	gets	a	lot	of	weight,	so	denormalized	or	
non-nested	arrays	is	where	we	lean	in	these	cases.	For	example,	we	at	ObjectRocket	use	Elasticsearch	for	analytics/visualization	of	how	
our	leet	is	being	used.	To	do	this,	we	use	a	denormalized	daily	index	of	everything	and	the	history	for	a	set	amount	of	time.	However,	
the	big	downside	with	the	denormalized	data	can	be	aggregating	certain	types	of	data	or	counting	things.	In	our	example	above,	trying	
to	get	an	all-time	employee	count	on	our	denormalized	data	is	tricky	since	each	employee	can	have	multiple	docs	and	looking	at	the	
cardinality	of	employee	numbers	is	not	guaranteed	to	be	accurate.	This	is	where	a	non-nested	array	could	help	at	the	expense	of	some	
potentially	incorrect	results	in	other	areas.	You	may	be	able	to	work	around	this	with	another	index	of	just	employees	or	metrics	you	
grab with SQL, or something similar.

The	same	goes	on	the	search	side.	Though	with	denormalized	data,	you’ll	need	to	be	careful	about	duplicate	responses,	the	speed	and	
ease	of	not	having	to	use	any	specialized	queries	with	denormalized	data	can	outweigh	the	advantages	of	a	nested	ield.	However,	
depending	on	how	you	want	to	query	the	joined	data,	the	nested	option	may	be	better	and	give	more	accurate	results.	

Data Set Size \ Use Case Visualization or Analytics Search

Small Denormalized	or	non-nested	arrays	with	regular	full	snapshots Denormalized	or	nested	with	regular	full	updates

Large Denormalized	or	non-nested	arrays	with	incremental	updates Parent-child	or	nested	with	incremental	updates

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

23

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html#_state

© 2018 Rackspace, US Inc.

All trademarks, service marks, images, products and brands remain the sole property of their respective holders.

Date	Modiied:	05/16/2018

ObjectRocket: MySQL to Elasticsearch

If you want to connect your database

with Elasticsearch, remember that

ObjectRocket can help you through it.

We offer fully managed database-as-

a-service solutions, and we can free up

your developers to focus on building

your app by taking the database

maintenance piece off your hands.

GET STARTED WITH

A CONSULTATION

About ObjectRocket
ObjectRocket's technology and expertise helps businesses build

better apps, faster so developers can concentrate on creating

applications and features without having to worry about managing

databases.	We’ll	migrate	your	data	at	no	cost	and	with	little-to-no	
downtime.	Our	DBAs	do	all	the	heavy	lifting	for	you	so	you	can	
focus	on	your	builds.		We	provide	24x7x365	expert	support	and	
architecture	services	for	MongoDB,	Elasticsearch,	Redis,	and	Hadoop	
instances in data centers across the globe.

For	data	sets	that	are	large	enough	to	be	troublesome	for	your	ES	cluster,	the	story	becomes	a	little	diferent.	We	tend	to	choose	
the	denormalized	route	for	visualizations	and	analytics	because	support	is	lacking	for	nested	and	parent-child	in	Kibana.	However,	
you	may	just	want	to	shrink	which	data	you	keep	or	minimize	update	size	by	only	incrementally	updating	the	data.	

On	the	search	side,	parent-child	ofers	some	nice	advantages	for	incremental	updates,	like	being	able	to	update	parents	and	
children separately. It also may shrink your data footprint in some cases, like scenarios where each parent has lots of children.

However,	parent-child	queries	can	be	many	times	slower	than	nested	and	denormalized	queries,	so	the	answer	you	pick	here	will	
really	have	to	do	with	query	speed	expectations.	If	speed	is	a	factor,	you	may	want	to	use	the	nested	case	instead	or	work	around	
the	duplicates	in	the	denormalized	case.

Closing and Alternatives
You	can	see	that	there’s	quite	a	bit	of	lexibility	for	modeling	data	in	Elasticsearch	to	match	your	use	case.	However,	certain	
things	like	staying	synchronized	on	updates	and	deletes	are	a	little	problematic	in	this	scenario.	Though	most	have	reasonable	
workarounds, there are also alternatives, like go-mysql-elasticsearch, that are worth considering.

https://app.hubspot.com/meetings/matt-eshelman/take-a-call-with-me-receive-a-swag-bag-inbox-x-
https://github.com/siddontang/go-mysql-elasticsearch
www.objectrocket.com/contact

	Option 1 - Denormalize Iti
	Query Examples
	How many employees there have been (all time):
	Kibana Examples
	Last Names of People in the Department Development
	How to Choose

