
Dirty Jobs:

Database
Edition

1Dirty Jobs: Database Edition

2 Introduction

3 Dirty Job #1: Data Migrations

6 Dirty Job #2: New Deployment

10 Dirty Job #3: Scaling and Sharding

12 MongoDB

13 Elasticsearch

14 Dirty Job #4: Upgrades

16 MongoDB

16 Elasticsearch

16 Redis

18 Dirty Job #5: Compactions

21 Dirty Job #6: Parsing Logs

23 Dirty Job #7: Draining Shards

24 Balancing

25 Dirty Job #8: Monitoring

27 Dirty Job #9: Query Analysis

 and Index Optimization

28 Index Management

28 MongoDB

29 Elasticsearch

31 Dirty Job #10: Health Reports

33 Why Choose ObjectRocket?

34 About ObjectRocket

What’s Inside

2Dirty Jobs: Database Edition

Intro

After 6+ years of supporting thousands
of production instances, ObjectRocket
knows quite a bit about managing databases.
We automate many common tasks but
we really shine when it comes to scaling
and troubleshooting our customers’
NoSQL databases.

Our team has seen just about everything. Zombie servers coming back to life,

developers creating infinite loops, customers deleting the wrong collection,

etc. We learn from our customers’ and our own mistakes and keep making our

database services that much better. We have a lot of knowledge to share and a lot

of tips and tricks that greatly improve performance and save our customers time

and money.

Here are some of the common database management tasks ObjectRocket

performs so our customers don’t have to.

#1 Data Migrations

#2 New Deployments

#3 Scaling and Sharding

#4 Upgrades

#5 Compactions

#6 Parsing Logs

#7 Draining Shards

#8 Monitoring

#9 Query Analysis
 and Index Optimization

 #10 Health Reports

3Dirty Jobs: Database Edition

Dirty Job #1
Data Migrations

Migrating data is rarely easy. There’s a lot at stake, especially

when migrating production data. When it comes to out-of-the-
box migration tools — you are all alone. With ObjectRocket, data

migration is easy.

4Dirty Jobs: Database Edition

Every ObjectRocket plan includes complimentary migration

services by our Data Migration Team. Our team is experienced

in migrating workloads across a variety of technologies,
providers, and architectures.

Our Data Migration Team is composed of technical account managers,

database architects, and customer data engineers. They work closely with your

team to help identify and assist you with the best path forward for getting your

data up and running. Whether it’s a simple dump and restore, or a live cut-over

requiring minimal downtime, we’ll work together to get the right plan in place

for your workload. Whether your organization has a simple database or a large,

complex application with distributed databases, we make it easy to migrate to

the ObjectRocket platform by working with you one-on-one.

5Dirty Jobs: Database Edition

“We really appreciate how amazing

the ObjectRocket team was

quickly migrating us. Timing was

of the essence and their team did

an absolutely amazing job.

Bryan Welfel

Co-Founder, Smooch Labs (creators of JSwipe)

ObjectRocket’s data migration service includes:

׫ Preparing connectivity from your current environment

to ours

׫ For MongoDB: Adding replica members on ObjectRocket

to your existing instance

׫ For Elasticsearch: Either loading from a backup or a

“reindex from remote”, where the new cluster connects to

the old cluster and reads data into the new database.

׫ For Redis: Either loading from a backup or migration

via replication.

׫ Migrating your existing configuration files to

our infrastructure

׫ One-on-one guidance as you update your application

׫ A short maintenance window and clean data migration

׫ Assurance that your application has been

appropriately migrated

׫ Removing old replica members, if no longer needed

6Dirty Jobs: Database Edition

Dirty Job #2
New Deployments

One of the biggest values ObjectRocket provides for customers

is planning for new deployments.

7Dirty Jobs: Database Edition

When preparing a database deployment, it’s important to

understand how the application is going to hold up in production.
ObjectRocket has developed a consistent, repeatable approach

to managing a deployment environment so surprises are

minimal once the database is in production.

“Working with ObjectRocket made our deployment
a breeze. From the very first meeting through
production deployment they have been responsive,
professional, and consultative. We’ll keep coming
back, not only because they have a great product,
but because they are great people to work with.
Jeff Hansen
Technical Director, Digital Engagement, SingleStone

The best approach incorporates prototyping a set up, conducting load testing,

monitoring key metrics, and using that information to scale. The key part of

the approach is to proactively monitor the entire system — which helps us

understand how the production system will hold up before deploying and

determine where you may need to add capacity. Having insight into potential

spikes in memory usage, for example, could help put out a write-lock fire

before it starts.

8Dirty Jobs: Database Edition

ObjectRocket’s deployment planning includes:

MongoDB

• Sizing clusters (number of data nodes,

size of data nodes, disk to storage ratio)

• Consulting on query patterns

• Recommendations for indexing

• Schema optimization

Elasticsearch

• Sizing clusters (number of data nodes,

size of data nodes, disk to storage ratio)

• Optimizing cluster settings for indexing

or search

• Installing any custom plugins, scripts,

or dictionaries needed

• Consulting on mapping templates and

indexing strategies

• Configuring Curator

• Assistance configuring other components

of the Elastic Stack (Beats, Logstash, etc.)

Redis

• Assessing the use case and finding

the best data types.

• Research and contribute to common

libraries and advise on best practices and

any potential pitfalls to provide better

performance.

• Profile customer activity and find any

potential bottlenecks from a physical

perspective to find the appropriate plan

size(s) and possible separation of data.

O P T I M I Z I N G R E P O R T I N G

9Dirty Jobs: Database Edition

CASE STUDY

Story time with Greg Avola, CTO of Untappd

One time we were looking at our API logs for a

server. We do a lot of requests, sometimes up

to 38,000 requests per minute at certain peak

hours. We have an internal service that works for

a business product, but we saw some spikes in

activity every 30 minutes. What was happening?

I investigated. “What requests are coming

through?” I wondered. I wanted to see all the

logs, but it’s very difficult to parse patchy logs

at that volume. So we spun up an Elasticsearch

instance with ObjectRocket, and we wrote all the

requests, the index for a particular day. And then I used Kibana to actually search

for the data, and I immediately found what I was looking for. Done.

That kind of thing is very easy to accomplish with ObjectRocket. I don’t have

to write any complex queries. I don’t have to do any CSVs. I just set it up, do it,

experiment, and take it down when I don’t need to have it anymore.

10Dirty Jobs: Database Edition

Dirty Job #3
Scaling & Sharding

It’s incredibly easy to spin up an instance of MongoDB,

Elasticsearch, or Redis. Many of our customers come to

us once they begin to feel the pain of scaling.

A lot of decisions need to be made at this point:

• Which way should we scale?

• How do we estimate how much space

we’ll need?

• Are there any strategies we can employ

to save space?

• How should we approach usage spikes?

11Dirty Jobs: Database Edition

There are two methods to scale a database:
vertical or horizontal.

Vertical scaling involves increasing the capacity of a single server, such as

using a more powerful CPU, adding more RAM, or increasing the amount of

storage space. Limitations in available technology may restrict a single machine

from being sufficiently powerful for a given workload. Additionally, cloud-based

providers have hard ceilings based on available hardware configurations.

As a result, there is a practical maximum for vertical scaling.

Horizontal scaling (or sharding) involves dividing the system dataset and load over

multiple servers, adding additional servers to increase capacity as required. While

the overall speed or capacity of a single machine may not be high, each machine

handles a subset of the overall workload, potentially providing better efficiency than

a single high-speed high-capacity server. Expanding the capacity of the deployment

only requires adding additional servers as needed, which can be a lower overall cost

than high-end hardware for a single machine. The trade off is increased complexity

in infrastructure and maintenance for the deployment.

12Dirty Jobs: Database Edition

MongoDB

ObjectRocket was built on the core premise of enabling simple and reliable

scalability for MongoDB. At its core, ObjectRocket utilizes MongoDB’s native

scaling architecture called sharding.

It’s a cloud world. In the cloud, there are interesting things we can do when we

have lots of compute at our disposal. Customers can start off small and grow

automatically. When users sign up, they instantly get a fully provisioned sharded

cluster in whatever plan size they choose. All of the complicated sharding

components are automatically set up and there is zero configuration for a

customer to complete. That means scaling on ObjectRocket is seamless.

“ObjectRocket has done so many things over
the years to help us scale from an environment
that was only around 10 instances and about
150 shards to where we are today with over 44
instances and 1000 shards.

Jon Hyman
CTO and Cofounder, Braze

13Dirty Jobs: Database Edition

Elasticsearch

ObjectRocket for Elasticsearch offers various data node sizes (for vertical scaling)

and can support anywhere from 2 to 30+ data nodes (for horizontal scaling).

Elasticsearch is great at spreading data across your cluster with the default

settings, but once your cluster begins to grow, the defaults can get you in trouble.

Selecting the right shard and indexing settings can be a moving target. By planning

ahead, making some good decisions up front, and tuning as you go, you can

keep your cluster healthy and running optimally. We help businesses refine their

Elasticsearch instances all the time.

RocketScale™

By default, all Elasticsearch clusters on the ObjectRocket platform are created

with RocketScale enabled and set to scale at 85% usage. This means that if

any data node hovers above 85% utilization for 10 minutes or more (which is

configurable), a new data node is added and the customer is notified.

14Dirty Jobs: Database Edition

Dirty Job #4
Upgrading

Upgrading databases can be painful. We talk to many CTOs

and other technical leaders that find themselves in this situation.
They’ve fallen really far behind and they feel stuck.

ObjectRocket can help.

15Dirty Jobs: Database Edition

Upgrading databases isn’t at the top of your list. We get it.

Your app is working, you don’t have the time or resources
to upgrade, even though you know you need to. It stays
at the bottom of your backlog because new features and
enhancements to your application are always more critical
to the business. You keep putting it off, knowing that you
are getting farther and farther behind.

ObjectRocket has performed thousands of upgrades for our

customers with little to no downtime involved.

16Dirty Jobs: Database Edition

MongoDB

From possible downtime, to rewriting code, to updating drivers — it can be painful to upgrade MongoDB instances.

MongoDB Inc. releases updates about once a year. In February 2018, MongoDB deprecated version 3.0. MongoDB

has also announced that they are deprecating version 3.2 in September 2018. Each release brings new features,

major bug fixes, and performance enhancements. When evaluating an upgrade to a newer version, customers may

have some features they’d like to add and there may be some nagging bugs they’d like to squash.

Elasticsearch

Upgrading to major versions of Elasticsearch is almost never simple. The velocity of Elasticsearch version releases

has truly become a double-edged sword. On one hand, the number of new features and capabilities in each

new version is staggering, but major version upgrades are always painful. When you’re running Elasticsearch in

production, downtime coupled with a potential reindexing is a non-starter for most companies. This is why we see

so many users still running Elasticsearch version 1.x, despite the fact that it’s been out of support for over a year.

Redis

Upgrades to Redis on ObjectRocket is simple. There’s a one-touch button upgrade that only incurs a few seconds of

interruption, as everything is handled on the backend.

Upgrades Made Easy

ObjectRocket handles all of the heavy lifting of upgrades for you.

17Dirty Jobs: Database Edition

Upgrades with ObjectRocket

ObjectRocket makes upgrades much easier. We handle upgrades all the time.

We have upgraded thousands of instances over the years and we’ve learned a lot

about making the process simple with little to no downtime. When you work with

ObjectRocket, we ensure your upgrades won’t fail and we can help ensure that

there aren’t inconsistencies in your data. While some companies offers tools, we

can handle all of the upgrade details for you.

ObjectRocket’s upgrade service includes:

Setting up a timeframe and acceptable amount of

downtime during the upgrade

Moving the data to a free temporary cluster using backups

and remote reindexing

Consulting on mapping/feature changes that will be needed

Preparing the new cluster for testing

Assisting in a cutover to the new cluster

18Dirty Jobs: Database Edition

Dirty Job #5
MongoDB Compactions

Running a big MongoDB installation necessitates a certain

amount of periodic maintenance. One of these routine tasks

is compaction.

19Dirty Jobs: Database Edition

When documents are deleted from a collection, empty spaces are left behind.

Over time, the collection becomes fragmented. MongoDB tries to reuse this space

where it can, but the space is never returned to the file system. Consequently the

file size never decreases despite documents being deleted from the collection.

This can be a more serious problem where data usage patterns are fairly

unstructured. As time goes by, your database ends up taking more space on disk

and in RAM to hold the same amount of data – because in practice it’s actually

data plus empty spaces – which slows the server down and reduces overall

query capacity.

The aim of compaction is to get the empty space back into use. It rewrites and

defragments all data and indexes in a collection. It does this by coalescing the

documents – i.e., it moves all of the documents at the “beginning” of a collection,

leaving the empty space at the end of the collection.

If you’re using the MMAPv1 storage engine, compaction will not return the

recovered space to the file system, but if you’re using the WiredTiger storage

engine, it will.

20Dirty Jobs: Database Edition

“You would have to use other database
management providers to understand just
how good ObjectRocket is. I’m not just
buying dollars per gigabyte. I am buying
a deluxe team that is there for us 24/7.
BJ Fox
VP of Engineering at Thunder Industries

21Dirty Jobs: Database Edition

Dirty Job #6
Parsing Logs

As part of the normalization process, log messages are passed

through a parser to determine if the details match specific
parameters. If the parameters are met, then the log messages are

tokenized to allow for better searching, alerting, and reporting.

22Dirty Jobs: Database Edition

Log Analysis and Troubleshooting

ObjectRocket analyzes logs to increase troubleshooting efficiency. A parsed

log helps answer many types of questions because you can slice and dice an

application’s behavior with very fine granularity.

Often, organizations don’t pay much attention to their logs because there are

just too many of them. It’s not unusual to generate thousands of log messages

per second. From process behavior (e.g., tracking what the Balancer and websvr

processes are doing right now) to overall health metrics of your whole database

(e.g., monitoring the performance impact of the new code that you just pushed),

log messages give ObjectRocket the knowledge to keep applications in a

healthy state.

“There are a few different ways we parse logs
for customers. We have some logs aggregated
and put into one place, which is nice for some
troubleshooting. For other logs, I come up with
custom regular expressions all the time to get
really granular. Sometimes I just open up 150
terminals and watch logs stream across my
screen until I narrow things down to find what
I’m looking for.

ObjectRocket Customer Data Engineer

23Dirty Jobs: Database Edition

Dirty Job #7
Draining Shards

Most database hosting services base their price on capacity.

So, removing capacity can save money. Most database-as-a-service
providers either charge extra or force you to do it yourself.

That’s not the case with ObjectRocket.

24Dirty Jobs: Database Edition

Balancing

When you delete old data, it can throw your shards

off balance. Issues can occur when deleting because

it can leave empty chunks lying around in your

shards. This sounds innocuous enough, but the

balancing algorithm adjusts the number of chunks

across all your shards and ignores the size of each

chunk. If some of those chunks are empty and others

are 64MB, you can quickly have one full shard and

one half empty shard. This is common in customers

that started small and have grown considerably

without reindexing and/or modifying shard count.

Here are some important points:



Good shard keys prevent

unneeded balancing


Give adequate time to balancing existing

and newly sharded collections



Set a window to prevent balancing

during peak times“I love ObjectRocket so much because of the level of support
they provide for us. We have a Slack channel; we can talk with
them. If there’s an issue, they’re always very on top of it.

Greg Avola
CTO at Untappd

If there’s one data node that’s very full and the rest

are not, that could be a sign that there’s an issue

with the size of the shards, cluster settings, or the

cluster plan size. RocketScale™ detects most of

these scenarios and alerts us internally rather than

adding a new data node, so one of our engineers can

investigate the large imbalance in node utilization.

Unless we can completely fix it on our end, we’ll

usually reach out to customers when we get these

alerts to propose solutions specific to the cluster.

25Dirty Jobs: Database Edition

Dirty Job #8
Alerts & Monitoring

Sleep better at night knowing that ObjectRocket automation and
database engineers have your back with specific monitoring and
alerts set up to ensure your data is always available.

26Dirty Jobs: Database Edition

ObjectRocket’s robot friends proactively monitor metrics such as RAM and disk

usage, IO, number of operations, and much more. When one of the monitored

metrics is off, the ObjectRocket team is alerted immediately. If there’s a failover or

disk usage issue, we take care of it.

ObjectRocket has alerts set up

 for each type of database:

254
 metrics/minute

on every MongoDB instance

254

metrics/minute

on every Elasticsearch instance

50

metrics/minute

on every Redis instance

27Dirty Jobs: Database Edition

Dirty Job #9
Query Analysis
& Index Optimization

Have questions about why your queries are slow? ObjectRocket
DBAs can provide answers. Our experts optimize MongoDB and
Elasticsearch queries for customers all the time.

Poor performing queries are usually the result of not having

an index at all or not setting up the appropriate indexes for

your queries.

28Dirty Jobs: Database Edition

“What’s really helpful to me as CTO is we don’t
really have to have that non-relational database
expertise in-house. We rely on ObjectRocket to
help us optimize our queries at what is sometimes
an absolutely insane scale.

Alen Durbuzovic
CTO at Chive Media Group

Index Management

If you’ve ever used physical cookbooks or large reference manuals, you know how

handy it is to have a good index at the back of the book. If there’s no index that

tells you what page the “chicken parmesan” recipe is on, it can take forever to flip

through the book to find it. The same holds true for database indexes. The larger

your cookbook or database instance, the more important it is to have a good index

to help find things quickly.

MongoDB

Are snapshots of your MongoDB instances trending

in the wrong direction?

Troubleshooting MongoDB isn’t always easy because there are often a

combination of issues causing slow database response. One of the most common

issues we see slowing down MongoDB stem from index issues.

• Missing an index entirely. If there’s no index at all, it can slow your MongoDB

instances down to a halt.

• Indexing too much

If every “the” and every “and” is indexed, it can slow down your MongoDB

instances, also. Each time data is inserted into results, the indexes are updated.

While it’s better than having no index at all, it can take longer for MongoDB to find

what you’re looking for and then everything slows down.

29Dirty Jobs: Database Edition

Elasticsearch

Have you noticed that your app is slow?
Having an Elasticsearch DBA review your index strategy
may help.

Massive Indexes and Massive Shards

The most common Elasticsearch index issue we run into are massive indexes with

massive shards. This causes is poor efficiency in cluster use. As the shards get

larger and larger, they get harder to place on a data node since it will require a large

block of free space on a data node. This leads to nodes with a lot of unused space.

For example, if there’s two 8GB data nodes but each shard is 6GB, 2GB are left

stranded on each data node.

ObjectRocket philosophy

Don’t be stingy with indexes

Spreading data across multiple indexes increases the number of shards

in the cluster and help spread the data a little more evenly. In addition

to an easier game of Tetris® when Elasticsearch places shards, multiple

indexes are easier to curate. Also, the alias capabilities in Elasticsearch

can still make multiple instances look like a single index to your app.

Increase shard count as your index size increases

If we see shard sizes starting to get a little too large, ObjectRocket can

update your index template to use more shards for each index. Our rule

of thumb: if a shard is larger than 40% of the size of a data node, that

shard is too big. In this case, we recommend reindexing to an index

with more shards, or moving up to a larger plan size (more capacity per

data node).

30Dirty Jobs: Database Edition

Too Many Indexes and Too Many Shards

Indexes and shards have overhead. That overhead manifests itself in storage/

memory resources as well as in processing performance. Since the cluster must

maintain the state of all shards and where they’re located, a massive number of

shards becomes a larger bookkeeping operation which will have an impact on

memory usage. Also, since queries will need to be split more ways, there will be a

lot more time spent in scatter/gather for queries.

Solutions for this are highly dependent on the size of the cluster, use case, and a

few other factors, but in general we can mitigate this with a few recommendations.

Make sure shards aren’t too large

In general, 25GB is what we target. However, 50GB is where we have the

conversation with our customers about reindexing. This has as much to do with the

performance of the shard itself as it does with the process of moving that shard

when you need to.

Keep shard size less than 40% of node size

We try to size the cluster and the shards to ensure that each of the largest shards

don’t take up more than 40% of a data node’s capacity. In a cluster with a number

of indexes at a mix of sizes, this is fairly effective, but in a cluster with a single or

very few indexes that are very large, we are even more aggressive and try to keep

this below 30%.

Selecting the right shard and indexing settings can

be a moving target, but having ObjectRocket help

you by planning ahead, making some good decisions

up front, and tuning as we go, you can keep your

cluster healthy and running optimally.

31Dirty Jobs: Database Edition

Dirty Job #10
Health Reports

ObjectRocket uses the right people, processes, and

technologies to automate and enhance performance

and ensure your future-readiness.

32Dirty Jobs: Database Edition

ObjectRocket provides full health reviews of customer instances. Based on

capacity, usage, and network metrics, DBAs put together a set of actionable

recommendations to maintain the overall health and reliability of the customer’s

environment. Each report is unique based on the customer’s workload and

use case.

8
/2
8
/2
0
1
6

1
/1
4
/2
0
1
7

5
/2
7
/2
0
1
7

9
/1
7
/2
0
1
7

1
1
/1
5
/2
0
1
7

3
/2
8
/2
0
1
8

4
/2
1
/2
0
1
8

7
/1
9
/2
0
1
8

9
/2
8
/2
0
1
8

My Database
Health Report

33Dirty Jobs: Database Edition

© 2018 Rackspace, US Inc. | All trademarks, service marks, images, products and brands remain the sole property of their respective holders. Date Modified: 10/10/2018

Open Source Innovators

We’re a leader in open source database management and are well known

for our deep knowledge of NoSQL databases (especially MongoDB,

Elasticsearch, and Redis).

Polyglot Persistence

Using aDBaaS that offers multiple types of databases is critical.

That way, youcan use the right database for your use case, saving time and

money.ObjectRocket manages several types of open source databases so

thatyou can use one vendor for all your needs.

Fast and Secure

We know how to get the most out of host machines to power demanding

workloads. Our platform provides high security while performing millions

of operations per second.

We Grow With You

ObjectRocket was built on the core premise of enabling simple and reliable

scalability for all of our databases. RocketScale™ is an ObjectRocket

technology that automatically adds data nodes as you need them.

Cost Conscious

In June 2017, Crimson Consulting Group released an analysis showing

that contracting with a fully managed DBaaS is a much better value than

managing databases in-house. Crimson noted that ObjectRocket lowers

data management costs by “orders of magnitude.” That’s the kind of

language scientists use to describe the distance between stars.

  
Contact us today so we can help you travel light years ahead of your competition. SCHEDULE A CONSULTATION

33Dirty Jobs: Database Edition

Why choose ObjectRocket?

Our team of database engineers, DBAs, and robot friends will get your payload of data into orbit
without crashing your ROI. Aside from all the dirty database jobs we take care of for you, here are

some other reasons we think you should meet us on the ObjectRocket launchpad.

About ObjectRocket

ObjectRocket’s technology and expertise helps businesses build better apps,

faster so developers can concentrate on creating applications and features

without having to worry about managing databases. We’ll migrate your data
at no cost and with little-to-no downtime. Our DBAs do all the heavy lifting
for you so you can focus on your builds. We provide 24x7x365 expert support
and architecture services for MongoDB, Elasticsearch, Redis, and Hadoop

instances in data centers across the globe.

© 2018 Rackspace, US Inc. | All trademarks, service marks, images, products and brands remain the sole property of their respective holders. Date Modified: 10/10/2018

